scholarly journals Numerical Analysis of Thermal Stress for a Stack of Planar Solid Oxide Fuel Cells

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 343
Author(s):  
Jianmin Zheng ◽  
Liusheng Xiao ◽  
Mingtao Wu ◽  
Shaocheng Lang ◽  
Zhonggang Zhang ◽  
...  

In this work, a 3D multi-physics coupled model was developed to analyze the temperature and thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack, and then the effects of different flow channels (co-flow, counter-flow and cross-flow) and electrolyte thickness were investigated. The simulation results indicate that the generated power is higher while the thermal stress is lower in the co-flow mode than those in the cross-flow mode. In the cross-flow mode, a gas inlet and outlet arrangement is proposed to increase current density by about 10%. The generated power of the stack increases with a thin electrolyte layer, but the temperature and its gradient of the stack also increase with increase of heat generation. The thermal stress for two typical sealing materials is also studied. The predicted results can be used for design and optimization of the stack structure to achieve lower stress and longer life.

ChemInform ◽  
2014 ◽  
Vol 45 (30) ◽  
pp. no-no
Author(s):  
S. A. Hajimolana ◽  
S. M. Tonekabonimoghadam ◽  
M. A. Hussain ◽  
M. H. Chakrabarti ◽  
N. S. Jayakumar ◽  
...  

2018 ◽  
Vol 165 (14) ◽  
pp. F1224-F1231 ◽  
Author(s):  
Xiaoqiang Zhang ◽  
Joseph Parbey ◽  
Guangsen Yu ◽  
Tingshuai Li ◽  
Martin Andersson

Author(s):  
Cun Wang ◽  
Tao Zhang ◽  
Cheng Zhao ◽  
Jian Pu

A three dimensional numerical model of a practical planar solid oxide fuel cell (SOFC) stack based on the finite element method is constructed to analyze the thermal stress generated at different uniform temperatures. Effects of cell positions, different compressive loads, and coefficient of thermal expansion (CTE) mismatch of different SOFC components on the thermal stress distribution are investigated in this work. Numerical results indicate that the maximum thermal stress appears at the corner of the interface between ceramic sealants and cells. Meanwhile the maximum thermal stress at high temperature is significantly larger than that at room temperature (RT) and presents linear growth with the increase of operating temperature. Since the SOFC stack is under the combined action of mechanical and thermal loads, the distribution of thermal stress in the components such as interconnects and ceramic sealants are greatly controlled by the CTE mismatch and scarcely influenced by the compressive loads.


2021 ◽  
Vol 103 (1) ◽  
pp. 767-784
Author(s):  
Jianmin Zheng ◽  
Liusheng Xiao ◽  
Ming Chen ◽  
Jinliang Yuan

Author(s):  
Randall S. Gemmen ◽  
Christopher D. Johnson

The dynamics of solid oxide fuel cell operation (SOFC) have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper a cross-flow geometry is considered. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note are results showing cases having reverse current over significant portions of the cell, starting from the moment of load perturbation up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.


Author(s):  
Pengfei Fan ◽  
Xiongwen Zhang ◽  
Guojun Li

A generalized, three-dimensional (3D) mathematical model of solid oxide fuel cells (SOFCs) for various geometries is constructed in this paper. A finite-volume method is applied to calculate the electric characteristics, which is based on the fundamental conservation law of mass, energy and electrical charge. The electrical potential distribution, the current density distribution, the concentrations distribution of the chemical species and the temperature profile are calculated by solving the governing equations of a single-unit model with double channels of co-flow and counter-flow pattern using the commercial computational fluid dynamic software Fluent. The internal steam reforming and the water shift reactions are taken into account in the mathematical model. The Knudsen diffusion is considered for computation of the gases diffusion in the porous electrodes and the concentration overpotential. The Butler-Volmer equation and the function of the reaction gases composition for the exchange density are used in the model to analyze the activation overpotential. Numerical simulations are performed for a planar geometry solid oxide fuel cell and the detailed features of the temperature, the electrical potential distribution and the gases composition are illustrated. The simulation results agree well with the Benchmark results for planar configuration. With the simulated temperature profile in the planar SOFC, the finite-element method is employed to calculate the thermal stress distribution in the planar solid oxide fuel cell. A 3D finite-element model consists of positive electrode-electrolyte-negative electrode (PEN) and interconnects assembly is constructed by using commercial finite-element code Abaqus. The effects of temperature profile, electrodes and electrolyte thickness, and coefficients of thermal expansion (CTE) mismatch between components are characterized. The calculated results indicate that the maximum stress appears on the electrode and electrolyte interface. The value and distribution of the thermal stress are the functions of the applied materials CTE, applied temperature profiles and the thicknesses of electrode and electrolyte. The calculated results can be applied as the guide for the SOFC materials selection and the SOFC structure design.


Author(s):  
Susan B. Swithenbank ◽  
Carl Martin Larsen

Most empirical codes for prediction of vortex-induced vibrations (VIV) has so far been limited to cross-flow response. The reason for this is that cross-flow amplitudes are normally larger that in-line amplitudes. Additionally the in-line response is considered to be driven by the cross-flow vibrations. However since the in-line frequency is twice the cross-flow frequency, fatigue damage from in-line vibrations may become as important and even exceed the damage from cross-flow vibrations. A way to predict in-line vibrations is to apply traditional methods that are used for cross-flow VIV and establish an empirical relationship between the cross-flow and in-line response. Previous work suggests that the ratio between the in-line and cross-flow amplitudes depends on the cross-flow mode number, Baarhom et al. (2004), but the empirical basis for this hypothesis is not strong. The motivation for the present work has been to verify or modify this hypothesis by extensive analysis of observed response. The present analysis uses complex data from experiments with wide variations in the physical parameters of the system, including length-to-diameter ratios from 82 to 4236, tension dominated natural frequencies and bending stiffness dominated natural frequencies, sub-critical and critical Reynolds numbers, different damping coefficients, uniform and sheared flows, standing wave and traveling wave vibrations, mode numbers from 1–25th, and different mass ratios. The conclusion from this work is that the cross-flow mode number is not the important parameter, but whether the frequency of vibration in the cross-flow direction is dominated by bending stiffness of tension.


Sign in / Sign up

Export Citation Format

Share Document