Dynamics of Solid Oxide Fuel Cell Operation

Author(s):  
Randall S. Gemmen ◽  
Christopher D. Johnson

The dynamics of solid oxide fuel cell operation (SOFC) have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper a cross-flow geometry is considered. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note are results showing cases having reverse current over significant portions of the cell, starting from the moment of load perturbation up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.

Author(s):  
Randall S. Gemmen ◽  
Christopher D. Johnson

This paper considers recent model results examining the transient performance of three common solid oxide fuel cell (SOFC) geometries (cross-flow, co-flow, and counter-flow) during load reduction events. Of particular note for large load decrease (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. This behavior results from the temperature gradients that exist in an SOFC stack. Also reported are test results from an experiment employing two separate button cells coupled together electrically (anode-to-anode and cathode-to-cathode) which are used to confirm the model predictions. The test results confirm the predictions of the model in that temperature gradients are a driver for current circulation within a cell. Also reported are test results of a button cell operated under reverse current to help begin to identify what effects such operation may have on fuel cell performance and durability.


2005 ◽  
Vol 8 (10) ◽  
pp. A531 ◽  
Author(s):  
E. Perry Murray ◽  
S. J. Harris ◽  
J. Liu ◽  
S. A Barnett

2005 ◽  
Vol 2 (4) ◽  
pp. 219-225 ◽  
Author(s):  
C. H. Cheng ◽  
Y. W. Chang ◽  
C. W. Hong

This paper conducts a multiscale parametric study of temperature and composition effects on the transport phenomenon of a solid oxide fuel cell (SOFC). The molecular dynamics technique was employed to study the transport phenomenon of the solid electrolyte, which is made of yttria-stabilized zirconia. The influences of Y2O3 concentration and various operation temperatures on the SOFC were studied. Simulation results show that there exists an optimal concentration of 8mol% of Y2O3 in the composition for oxygen transport. Also higher operation temperature promotes the oxygen ion-hopping process that increases the ionic conductivity. A macroscale parametric study was also conducted in this paper to validate the influence of the temperature uniformity in the solid electrolyte by employing the computational fluid dynamics technique. The temperature distribution maps of a single-cell planar SOFC with coflow, counterflow and cross-flow channel designs are presented. The results conclude that the coflow configuration is the best design of the three.


Author(s):  
Huisheng Zhang ◽  
Wenshu Zhang ◽  
Zhenhua Lu ◽  
Shilie Weng

Solid oxide fuel cell (SOFC) is a complicated system with heat and mass transfer as well as electrochemical reactions. The flow configuration has great impact on the system performance. Based on the established one dimensional direct internal reforming SOFC mathematical model, with the consideration of the flow, thermal and electrical characteristic, this paper developed the two dimensional mathematical model for both counter-flow and cross-flow types. Plus, the comparison and analysis of the steady distribution are performed. The results reveal that on the geometry parameters and inlet conditions, the outlet temperatures of counter-flow SOFC are lower than that of cross-flow. However, the average temperature of PEN plate is higher than cross-flow, and both the operating voltage and electric efficiency are also higher than that of cross-flow. This will be beneficial for the structure design of SOFC.


2015 ◽  
Vol 283 ◽  
pp. 151-161 ◽  
Author(s):  
Ragnar Kiebach ◽  
Wei-Wei Zhang ◽  
Wei Zhang ◽  
Ming Chen ◽  
Kion Norrman ◽  
...  

2019 ◽  
Vol 11 (33) ◽  
pp. 63-70 ◽  
Author(s):  
Olga Marina ◽  
Larry R. Pederson ◽  
Danny J. Edwards ◽  
Chris A. Coyle ◽  
Jared Templeton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document