scholarly journals Macromolecular Structure of a Commercial Humic Acid Sample

Environments ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 32
Author(s):  
Sante Capasso ◽  
Simeone Chianese ◽  
Dino Musmarra ◽  
Pasquale Iovino

The molecular structure of a commercial sample of humic acids (HA) was investigated by membrane dialysis experiments (MD) and low-pressure size-exclusion chromatography (LP-SEC). MD showed that HA molecules were retained by dialysis membrane with a cut-off of 6–8 kDa, independently from HA concentration (15 or 150 mg L−1), NaHCO3 concentration (0.005–2.0 mol L−1), and from propan 2-ol (0–5 v/v %). SEC experiments at low pressure gave chromatograms with a broad peak, with an elution volume between those of the globular proteins bovine serum albumin (molecular weight = 66.5 kDa) and lysozyme from egg (molecular weight = 14.4 kDa). The pattern of the chromatogram did not vary with HA concentration, and second-run chromatograms of single eluted fractions showed relatively sharp peaks. From these data, we reveal that the commercial HA sample analysed has a macromolecular structure rather than being a supramolecular aggregate of relatively small molecules, as recently proposed for some samples of HA obtained from different sources.


1994 ◽  
Vol 72 (02) ◽  
pp. 275-280 ◽  
Author(s):  
David Brieger ◽  
Joan Dawes

SummaryIt is widely reported that persistent anti-Xa activity follows administration of low molecular weight heparins. To identify the effectors of this activity we have injected 125I-labelled Enoxaparin sodium into rabbits and subsequently analysed the circulating radiolabelled material and anti-Xa activity by affinity and size exclusion chromatography. Antithrombin III-binding material derived from the injected drug was responsible for all the anti-Xa amidolytic activity. At early times after injection additional anticoagulant activity which was largely attributable to tissue factor pathway inhibitor was measured by the Heptest clotting assay after removal of glycosaminoglycans from plasma samples. Small radiolabelled fragments, including penta/hexasaccharide with affinity for antithrombin III, were detectable in the circulation 1 week later, and sulphated oligosaccharides persisted for 3-4 weeks. Significant quantities of radiolabel remained in the liver and kidney several weeks post-injection; these organs may sequester some of the injected drug and give rise to circulating biologically active material by degradation and secretion of catabolic products into the plasma.



2018 ◽  
Vol 33 (2) ◽  
pp. 180-197 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

Pristine mesoporous diatomite was employed to prepare polystyrene/diatomite composites. Diatomite platelets were used for in situ polymerization of styrene by atom transfer radical polymerization to synthesize tailor-made polystyrene nanocomposites. X-Ray fluorescence spectrometer analysis and thermogravimetric analysis (TGA) were employed for evaluating some inherent properties of pristine diatomite platelets. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite platelets. Evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Linear increase of ln ( M0/M) with time for all the samples shows that polymerization proceeds in a living manner. Addition of 3 wt% pristine mesoporous diatomite leads to an increase of conversion from 72% to 89%. Molecular weight of polystyrene chains increases from 11,326 g mol−1 to 14134 g mol−1 with the addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.13 to 1.38. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 81.9°C to 87.1°C by adding 3 wt% of mesoporous diatomite platelets.



Sign in / Sign up

Export Citation Format

Share Document