scholarly journals Accounting for DEM Error in Sea Level Rise Assessment within Riverine Regions; Case Study from the Shatt Al-Arab River Region

Environments ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 46
Author(s):  
Ali K. M. Al-Nasrawi ◽  
Ameen A. Kadhim ◽  
Ashton M. Shortridge ◽  
Brian G. Jones

Global elevation datasets such as the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) are the best available terrain data in many parts of the world. Consequently, SRTM is widely used for understanding the risk of coastal inundation due to climate change-induced sea level rise. However, SRTM elevations are prone to error, giving rise to uncertainty in the quality of the inundation projections. This study investigated the error propagation model for the Shatt al-Arab River region (SARR) to understand the impact of DEM error on an inundation model in this sensitive, low-lying coastal region. The analysis involved three stages. First, a multiple regression model, parameterized from the Mississippi River delta region, was used to generate an expected DEM error surface for the SARR. This surface was subtracted from the SRTM DEM for the SARR to adjust it. Second, residuals from this model were simulated for the SARR. Modelled residuals were subtracted from the adjusted SRTM to produce 50 DEM realizations capturing potential elevation variation. Third, the DEM realizations were each used in a geospatial “bathtub” inundation model to estimate flooding area in the region given 1 m of sea level rise. Across all realizations, the area predicted to flood covered about 50% of the entire region, while predicted flooding using the raw SRTM covered only about 28%, indicating substantial underprediction of the affected area when error was not accounted for. This study can be an applicable approach within such environments worldwide.

2022 ◽  
Vol 12 (3) ◽  
pp. 73-83
Author(s):  
Jamal M Haider ◽  
Haque M Aminul ◽  
Hossain Md Jahid ◽  
Haque Anisul

Coastal region of Bangladesh possesses a fragile ecosystem and is exposed to hazards like cyclones, floods, storm surges, and water-logging. A detail understanding on the impact of water-logging due to various natural, man-made and climate change scenarios is still lacking. Considering this research gap, the present research is aimed to study impacts of these scenarios inside polders-24 and 25 which are situated on the western part of the coastal region. In this Study as natural scenario, sedimentation in the Hari River; as man-made scenario, new polders in the south-central region and as SLR scenario, an extreme sea level rise of 1.48m are considered. Long-term satellite images are analyzed, and numerical model is applied in the study area. The result shows that water-logging is more acute inside polder-25 compared to polder-24. Sedimentation in Hari River aggravates the water-logging condition. Dredging in Hari River does improve the situation. Journal of Engineering Science 12(3), 2021, 73-83


2013 ◽  
Vol 6 (2) ◽  
pp. 81-87 ◽  
Author(s):  
T. L. A. Driessen ◽  
M. van Ledden

Abstract. The objective of this paper was to describe the impact of climate change on the Mississippi River flood hazard in the New Orleans area. This city has a unique flood risk management challenge, heavily influenced by climate change, since it faces flood hazards from multiple geographical locations (e.g. Lake Pontchartrain and Mississippi River) and multiple sources (hurricane, river, rainfall). Also the low elevation and significant subsidence rate of the Greater New Orleans area poses a high risk and challenges the water management of this urban area. Its vulnerability to flooding became dramatically apparent during Hurricane Katrina in 2005 with huge economic losses and a large number of casualties. A SOBEK Rural 1DFLOW model was set up to simulate the general hydrodynamics. This model included the two important spillways that are operated during high flow conditions. A weighted multi-criteria calibration procedure was performed to calibrate the model for high flows. Validation for floods in 2011 indicated a reasonable performance for high flows and clearly demonstrated the influence of the spillways. 32 different scenarios were defined which included the relatively large sea level rise and the changing discharge regime that is expected due to climate change. The impact of these scenarios on the water levels near New Orleans were analysed by the hydrodynamic model. Results showed that during high flows New Orleans will not be affected by varying discharge regimes, since the presence of the spillways ensures a constant discharge through the city. In contrary, sea level rise is expected to push water levels upwards. The effect of sea level rise will be noticeable even more than 470 km upstream. Climate change impacts necessitate a more frequent use of the spillways and opening strategies that are based on stages.


2018 ◽  
Vol 18 (1) ◽  
pp. 351-364 ◽  
Author(s):  
Mansur Ali Jisan ◽  
Shaowu Bao ◽  
Leonard J. Pietrafesa

Abstract. The hydrodynamic model Delft3D is used to study the impact of sea level rise (SLR) on storm surge and inundation in the coastal region of Bangladesh. To study the present-day inundation scenario, the tracks of two known tropical cyclones (TC) were used: Aila (Category 1; 2009) and Sidr (Category 5; 2007). Model results were validated with the available observations. Future inundation scenarios were generated by using the strength of TC Sidr, TC Aila and an ensemble of historical TC tracks but incorporating the effect of SLR. Since future change in storm surge inundation under SLR impact is a probabilistic incident, a probable range of future change in the inundated area was calculated by taking into consideration the uncertainties associated with TC tracks, intensities and landfall timing. The model outputs showed that the inundated area for TC Sidr, which was calculated as 1860 km2, would become 31 % larger than the present-day scenario if a SLR of 0.26 m occurred during the mid-21st-century climate scenario. Similarly to that, an increasing trend was found for the end-21st-century climate scenario. It was found that with a SLR of 0.54 m, the inundated area would become 53 % larger than the present-day case. Along with the inundation area, the impact of SLR was examined for changes in future storm surge level. A significant increase of 14 % was found in storm surge level for the case of TC Sidr at Barisal station if a SLR of 0.26 m occurred in the mid-21st century. Similarly to that, an increase of 29 % was found at storm surge level with a SLR of 0.54 m in this location for the end-21st-century climate scenario. Ensemble projections based on uncertainties of future TC events also showed that, for a change of 0.54 m in SLR, the inundated area would range between 3500 and 3750 km2, whereas for present-day SLR simulations it was found within the range of 1000–1250 km2. These results revealed that even if the future TCs remain at the same strength as at present, the projected changes in SLR will generate more severe threats in terms of surge height and the extent of the inundated area.


Author(s):  
Mansur Ali Jisan ◽  
Shaowu Bao ◽  
Leonard J. Pietrafesa

Abstract. The hydrodynamic model Delft3D is used to study the impact of Sea Level Rise (SLR) on storm surge and inundation in the coastal region of Bangladesh. To study the present day inundation scenario, track of two known tropical cyclones (TC) were used: Aila (Category 1; 2009) and Sidr (Category 5; 2007). Model results were validated with the available observations. Future inundation scenarios were generated by using the strength of TC Sidr, TC Aila and an ensemble of historical TC tracks but incorporating the effect of SLR. Since future change in storm surge inundation under SLR impact is a probabilistic incident, that’s why a probable range of future change in inundated area was calculated by taking in to consideration the uncertainties associated with TC tracks, intensities and landfall timing. The model outputs showed that, the inundated area for TC Sidr, which was calculated as 1860 km2, would become 31 % higher than the present day scenario if a SLR of 0.26 meter occurs during the mid-21st century climate scenario. Similar to that, an increasing trend was found for the end of the 21st century climate scenario. It was found that with a SLR of 0.54 meter, the inundated area would become 53 % higher than the present day case. Along with the inundation area, the impact of SLR was examined for the changes in future storm surge level. A significant increase of 21 % was found in storm surge level for the case of TC Sidr in Barisal station if a Sea Level Rise of 0.26 meter occurs at the middle of the 21st century. Similar to that, an increase of 37 % was found in storm surge level with a SLR of 0.54 meter in this location for the end of the 21st century climate scenario. Ensemble projections based on uncertainties of future TC events also showed that, for a change of 0.54 meters in SLR, the inundated area would range between 3500–3750 km2 whereas for present day SLR simulations it was found within the range of 1000–1250 km2. These results revealed that even if the future TCs remain at the same strength as at present, the projected changes in SLR will generate more severe threats in terms of surge height and extent of inundated area.


2012 ◽  
Vol 5 (1) ◽  
pp. 333-349
Author(s):  
T. L. A. Driessen ◽  
M. van Ledden

Abstract. The objective of this paper is to describe the impact of climate change on the Mississippi River flood hazard in the New Orleans area. This city has a unique flood risk management challenge, heavily influenced by climate change, since it faces flood hazards from multiple geographical locations (e.g. Lake Pontchartrain and Mississippi River) and multiple sources (hurricane, river, rainfall). Also the low elevation and significant subsidence rate of the Greater New Orleans area poses a high risk and challenges the water management of this urban area. Its vulnerability to flooding became dramatically apparent during Hurricane Katrina in 2005 with huge economic losses and a large number of casualties. A SOBEK Rural 1DFLOW model was set up to simulate the general hydrodynamics. This improved model includes two important spillways that are operated during high flow conditions. Subsequently, a weighted multi-criteria calibration procedure was performed to calibrate the model for high flows. Validation for floods in 2011 indicates a very reasonable performance for high flows and clearly demonstrates the necessity of the spillways. 32 different scenarios are defined which includes the relatively large sea level rise and the changing discharge regime that is expected due to climate change. The impact of these scenarios is analysed by the hydrodynamic model. Results show that during high flows New Orleans will not be affected by varying discharge regimes, since the presence of the spillways ensures a constant discharge through the city. In contrary, sea level rise is expected to push water levels upwards. The effect of sea level rise will be noticeable even more than 470 km upstream. Climate change impacts necessitate a more frequent use of the spillways and opening strategies that are based on stages. Potential alternatives on how to cope with the flood hazard of this river in the long term, such as river widening and large-scale redistribution of the flow through diversions, are proposed.


2008 ◽  
Vol 90 (4) ◽  
pp. 475-492 ◽  
Author(s):  
Matthew J. P. Cooper ◽  
Michael D. Beevers ◽  
Michael Oppenheimer

Sign in / Sign up

Export Citation Format

Share Document