scholarly journals SIMULATION OF THE IMPACT OF SEA LEVEL RISE ON MORPHOLOGICAL CHANGE IN THE COASTAL REGION OF MEKONG RIVER

Author(s):  
Vu Duy Vinh ◽  
Tran Dinh Lan ◽  
Tran Anh Tu ◽  
Nguyen Thi Kim Anh
2022 ◽  
Vol 12 (3) ◽  
pp. 73-83
Author(s):  
Jamal M Haider ◽  
Haque M Aminul ◽  
Hossain Md Jahid ◽  
Haque Anisul

Coastal region of Bangladesh possesses a fragile ecosystem and is exposed to hazards like cyclones, floods, storm surges, and water-logging. A detail understanding on the impact of water-logging due to various natural, man-made and climate change scenarios is still lacking. Considering this research gap, the present research is aimed to study impacts of these scenarios inside polders-24 and 25 which are situated on the western part of the coastal region. In this Study as natural scenario, sedimentation in the Hari River; as man-made scenario, new polders in the south-central region and as SLR scenario, an extreme sea level rise of 1.48m are considered. Long-term satellite images are analyzed, and numerical model is applied in the study area. The result shows that water-logging is more acute inside polder-25 compared to polder-24. Sedimentation in Hari River aggravates the water-logging condition. Dredging in Hari River does improve the situation. Journal of Engineering Science 12(3), 2021, 73-83


2018 ◽  
Vol 18 (1) ◽  
pp. 351-364 ◽  
Author(s):  
Mansur Ali Jisan ◽  
Shaowu Bao ◽  
Leonard J. Pietrafesa

Abstract. The hydrodynamic model Delft3D is used to study the impact of sea level rise (SLR) on storm surge and inundation in the coastal region of Bangladesh. To study the present-day inundation scenario, the tracks of two known tropical cyclones (TC) were used: Aila (Category 1; 2009) and Sidr (Category 5; 2007). Model results were validated with the available observations. Future inundation scenarios were generated by using the strength of TC Sidr, TC Aila and an ensemble of historical TC tracks but incorporating the effect of SLR. Since future change in storm surge inundation under SLR impact is a probabilistic incident, a probable range of future change in the inundated area was calculated by taking into consideration the uncertainties associated with TC tracks, intensities and landfall timing. The model outputs showed that the inundated area for TC Sidr, which was calculated as 1860 km2, would become 31 % larger than the present-day scenario if a SLR of 0.26 m occurred during the mid-21st-century climate scenario. Similarly to that, an increasing trend was found for the end-21st-century climate scenario. It was found that with a SLR of 0.54 m, the inundated area would become 53 % larger than the present-day case. Along with the inundation area, the impact of SLR was examined for changes in future storm surge level. A significant increase of 14 % was found in storm surge level for the case of TC Sidr at Barisal station if a SLR of 0.26 m occurred in the mid-21st century. Similarly to that, an increase of 29 % was found at storm surge level with a SLR of 0.54 m in this location for the end-21st-century climate scenario. Ensemble projections based on uncertainties of future TC events also showed that, for a change of 0.54 m in SLR, the inundated area would range between 3500 and 3750 km2, whereas for present-day SLR simulations it was found within the range of 1000–1250 km2. These results revealed that even if the future TCs remain at the same strength as at present, the projected changes in SLR will generate more severe threats in terms of surge height and the extent of the inundated area.


Environments ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 46
Author(s):  
Ali K. M. Al-Nasrawi ◽  
Ameen A. Kadhim ◽  
Ashton M. Shortridge ◽  
Brian G. Jones

Global elevation datasets such as the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) are the best available terrain data in many parts of the world. Consequently, SRTM is widely used for understanding the risk of coastal inundation due to climate change-induced sea level rise. However, SRTM elevations are prone to error, giving rise to uncertainty in the quality of the inundation projections. This study investigated the error propagation model for the Shatt al-Arab River region (SARR) to understand the impact of DEM error on an inundation model in this sensitive, low-lying coastal region. The analysis involved three stages. First, a multiple regression model, parameterized from the Mississippi River delta region, was used to generate an expected DEM error surface for the SARR. This surface was subtracted from the SRTM DEM for the SARR to adjust it. Second, residuals from this model were simulated for the SARR. Modelled residuals were subtracted from the adjusted SRTM to produce 50 DEM realizations capturing potential elevation variation. Third, the DEM realizations were each used in a geospatial “bathtub” inundation model to estimate flooding area in the region given 1 m of sea level rise. Across all realizations, the area predicted to flood covered about 50% of the entire region, while predicted flooding using the raw SRTM covered only about 28%, indicating substantial underprediction of the affected area when error was not accounted for. This study can be an applicable approach within such environments worldwide.


Author(s):  
Mansur Ali Jisan ◽  
Shaowu Bao ◽  
Leonard J. Pietrafesa

Abstract. The hydrodynamic model Delft3D is used to study the impact of Sea Level Rise (SLR) on storm surge and inundation in the coastal region of Bangladesh. To study the present day inundation scenario, track of two known tropical cyclones (TC) were used: Aila (Category 1; 2009) and Sidr (Category 5; 2007). Model results were validated with the available observations. Future inundation scenarios were generated by using the strength of TC Sidr, TC Aila and an ensemble of historical TC tracks but incorporating the effect of SLR. Since future change in storm surge inundation under SLR impact is a probabilistic incident, that’s why a probable range of future change in inundated area was calculated by taking in to consideration the uncertainties associated with TC tracks, intensities and landfall timing. The model outputs showed that, the inundated area for TC Sidr, which was calculated as 1860 km2, would become 31 % higher than the present day scenario if a SLR of 0.26 meter occurs during the mid-21st century climate scenario. Similar to that, an increasing trend was found for the end of the 21st century climate scenario. It was found that with a SLR of 0.54 meter, the inundated area would become 53 % higher than the present day case. Along with the inundation area, the impact of SLR was examined for the changes in future storm surge level. A significant increase of 21 % was found in storm surge level for the case of TC Sidr in Barisal station if a Sea Level Rise of 0.26 meter occurs at the middle of the 21st century. Similar to that, an increase of 37 % was found in storm surge level with a SLR of 0.54 meter in this location for the end of the 21st century climate scenario. Ensemble projections based on uncertainties of future TC events also showed that, for a change of 0.54 meters in SLR, the inundated area would range between 3500–3750 km2 whereas for present day SLR simulations it was found within the range of 1000–1250 km2. These results revealed that even if the future TCs remain at the same strength as at present, the projected changes in SLR will generate more severe threats in terms of surge height and extent of inundated area.


2008 ◽  
Vol 90 (4) ◽  
pp. 475-492 ◽  
Author(s):  
Matthew J. P. Cooper ◽  
Michael D. Beevers ◽  
Michael Oppenheimer

2021 ◽  
Vol 23 (2-3) ◽  
pp. 115-132
Author(s):  
Łukasz Kułaga

Abstract The increase in sea levels, as a result of climate change in territorial aspect will have a potential impact on two major issues – maritime zones and land territory. The latter goes into the heart of the theory of the state in international law as it requires us to confront the problem of complete and permanent disappearance of a State territory. When studying these processes, one should take into account the fundamental lack of appropriate precedents and analogies in international law, especially in the context of the extinction of the state, which could be used for guidance in this respect. The article analyses sea level rise impact on baselines and agreed maritime boundaries (in particular taking into account fundamental change of circumstances rule). Furthermore, the issue of submergence of the entire territory of a State is discussed taking into account the presumption of statehood, past examples of extinction of states and the importance of recognition in this respect.


2021 ◽  
Author(s):  
Fabien Maussion ◽  
Quentin Lejeune ◽  
Ben Marzeion ◽  
Matthias Mengel ◽  
David Rounce ◽  
...  

<p>Mountain glaciers have a delayed response to climate change and are expected to continue to melt long after greenhouse gas emissions have stopped, with consequences both for sea-level rise and water resources. In this contribution, we use the Open Global Glacier Model (OGGM) to compute global glacier volume and runoff changes until the year 2300 under a suite of stylized greenhouse gas emission characterized by (i) the year at which anthropogenic emissions culminate, (ii) their reduction rates after peak emissions and (iii) whether they lead to a long-term global temperature stabilization or decline. We show that even under scenarios that achieve the Paris Agreement goal of holding global-mean temperature below 2 °C, glacier contribution to sea-level rise will continue well beyond 2100. Because of this delayed response, the year of peak emissions (i.e. the timing of mitigation action) has a stronger influence on mit-term global glacier change than other emission scenario characteristics, while long-term change is dependent on all factors. We also discuss the impact of early climate mitigation on regional glacier change and the consequences for glacier runoff, both short-term (where some basins are expected to experience an increase of glacier runoff) and long-term (where all regions are expecting a net-zero or even negative glacier contribution to total runoff), underlining the importance of mountain glaciers for regional water availability at all timescales.</p>


2021 ◽  
Vol 91 (3) ◽  
pp. 262-295
Author(s):  
BRIAN J. WILLIS ◽  
TAO SUN ◽  
R. BRUCE AINSWORTH

Abstract Process-physics-based, coupled hydrodynamic–morphodynamic delta models are constructed to understand preserved facies heterogeneities that can influence subsurface fluid flow. Two deltaic systems are compared that differ only in the presence of waves: one river dominated and the other strongly influenced by longshore currents. To understand an entire preserved deltaic succession, the growth of multiple laterally adjacent delta lobes is modeled to define delta axial to marginal facies trends through an entire regressive–transgressive depositional succession. The goal is to refine a facies model for symmetrical wave-dominated deltas (where littoral drift diverges from the delta lobe apex). Because many factors change depositional processes on deltas, the description of the river-dominated example is included to provide a direct reference case from which to define the impact of waves on preserved facies patterns. Both systems display strong facies trends from delta axis to margin that continued into inter-deltaic areas. River-dominated delta regression preserved a dendritic branching of compensationally stacked bodies. Transgression, initiated by sea-level rise, backfilled the main channel and deposited levees and splays on the submerging delta top. Wave-dominated deltas developed dual clinoforms: a shoreface clinoform built as littoral drift carried sediment away from the river month and onshore, and a subaqueous delta-front clinoform composed of sediment accumulated below wave base. Although littoral drift in both directions away from the delta axis stabilized the position of the river at the shoreline, distributary-channel avulsions and lateral migration of river flows across the subaqueous delta top produced heterogeneities in both sets of clinoform deposits. Separation of shoreface and subaqueous delta-front clinoforms across a subaqueous delta top eroded to wave base produced a discontinuity in progradational vertical successions that appeared gradual in some locations but abrupt in others. Littoral drift flows away from adjacent deltas converged in inter-deltaic areas, producing shallow water longshore bars cut by wave-return-flow channels with associated terminal mouth bars. Transgression initiated by sea-level rise initially led to vertical aggradation of wave-reworked sheet sands on the subaqueous delta top and then retreating shoreface barrier sands as the subaerial delta top flooded. Pseudo inter-well flow tests responded to local heterogeneities in the preserved deposits. As expected, abandoned channels in the river-dominated case defined shoreline-perpendicular preferential flow paths and wave-dominated delta deposits are more locally homogeneous, but scenarios for development of more pronounced shore-parallel heterogeneity patterns for wave-influenced deltas are discussed. The results highlight the need to consider the dual clinoform nature of wave-dominated delta deposition for facies prediction and subsurface interpretation.


Sign in / Sign up

Export Citation Format

Share Document