scholarly journals Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Marcus Warwell ◽  
Geral McDonald ◽  
John Hanna ◽  
Mee-Sook Kim ◽  
Bradley Lalande ◽  
...  

Research Highlights: Two genets of Armillaria altimontana Brazee, B. Ortiz, Banik, and D.L. Lindner and five genets of Armillaria solidipes Peck (as A. ostoyae [Romagnesi] Herink) were identified and spatially mapped within a 16-year-old western white pine (Pinus monticola Doug.) plantation, which demonstrated distinct spatial distribution and interspecific associations. Background and Objectives: A. solidipes and A. altimontana frequently co-occur within inland western regions of the contiguous USA. While A. solidipes is well-known as a virulent primary pathogen that causes root disease on diverse conifers, little has been documented on the impact of A. altimontana or its interaction with A. solidipes on growth, survival, and the Armillaria root disease of conifers. Materials and Methods: In 1971, a provenance planting of P. monticola spanning 0.8 ha was established at the Priest River Experimental Forest in northern Idaho, USA. In 1987, 2076 living or recently dead trees were measured and surveyed for Armillaria spp. to describe the demography and to assess the potential influences of Armillaria spp. on growth, survival, and the Armillaria root disease among the study trees. Results: Among the study trees, 54.9% were associated with Armillaria spp. The genets of A. altimontana and A. solidipes comprised 82.7% and 17.3% of the sampled isolates (n = 1221) from the study plot, respectively. The mapped distributions showed a wide, often noncontiguous, spatial span of individual Armillaria genets. Furthermore, A. solidipes was found to be uncommon in areas dominated by A. altimontana. The trees colonized by A. solidipes were associated with a lower tree growth/survival and a substantially higher incidence of root disease than trees colonized only by A. altimontana or trees with no colonization by Armillaria spp. Conclusions: The results demonstrate that A. altimontana was not harmful to P. monticola within the northern Idaho planting. In addition, the on-site, species-distribution patterns suggest that A. altimontana acts as a long-term, in situ biological control of A. solidipes. The interactions between these two Armillaria species appear critical to understanding the Armillaria root disease in this region.

2002 ◽  
Vol 32 (7) ◽  
pp. 1109-1125 ◽  
Author(s):  
Theresa B Jain ◽  
Russell T Graham ◽  
Penelope Morgan

Many studies have assessed tree development beneath canopies in forest ecosystems, but results are seldom placed within the context of broad-scale biophysical factors. Mapped landscape characteristics for three watersheds, located within the Coeur d'Alene River basin in northern Idaho, were integrated to create a spatial hierarchy reflecting biophysical factors that influence western white pine (Pinus monticola Dougl. ex D. Don) development under a range of canopy openings. The hierarchy included canopy opening, landtype, geological feature, and weathering. Interactions and individual-scale contributions were identified using stepwise log–linear regression. The resulting models explained 68% of the variation for estimating western white pine basal diameter and 64% for estimating height. Interactions among spatial scales explained up to 13% of this variation and better described vegetation response than any single spatial scale. A hierarchical approach based on biophysical attributes is an excellent method for studying plant and environment interactions.


1998 ◽  
Vol 78 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Deborah S. Page-Dumroese ◽  
Alan E. Harvey ◽  
Martin F. Jurgensen ◽  
Michael P. Amaranthus

Intensive timber harvesting and site preparation are becoming more common as demand for timber-based products increases. On some harvested sites in the western United Staes of America and Canada, stump removal is used to ameliorate root disease problems. Soil compaction and nutrient loss could become a problem on some sites after harvesting, site preparation, or stump removal. In a non-replicated, randomized block experiment, two levels of soil compaction (none and severe) and a stump extraction treatment were examined on an ash-cap soil in northern Idaho. These treatments were planted with Douglas-fir (Pseudotsuga menziesii var. glauca [Beissn.] Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings. Soil compaction increased post-harvest bulk density 15–20% to a depth of 30 cm. Stump removal decreased surface soil bulk density, but it increased at the 30- to 45-cm depth to levels equal to the soil compaction treatment. One year after outplanting, seedling top weights were similar among treatments, but root volume was significantly reduced in the soil compaction treatment. Soil compaction and stump removal treatments also reduced the numbers and morphological types of ectomycorrhizae and non-ectomycorrhizal short roots on Douglas-fir. Western white pine seedlings had reduced numbers of non-ectomycorrhizal short roots in the same treatments. Three years after outplanting, stump removal resulted in smaller root collar diameters and less total N content for both seedling species. Severe site disturbance, with associated soil compaction and mixing, may decrease productivity of ash-cap sites by reducing pore space and root and ectomycorrhizal activity. Managers must weigh short-term benefits of intensive site disturbance with possible long-term loss of soil productivity. Key words: Bulk density, compaction, ectomycorrhizae, stumping, site preparation, Douglas-fir, western white pine


1970 ◽  
Vol 102 (12) ◽  
pp. 1546-1553 ◽  
Author(s):  
Richard A. Goyer ◽  
John A. Schenk

AbstractNotes on the biology and habits of 12 parasitic insects associated with Eucosma rescissoriana Heinrich in western white pine, Pinus monticola Douglas, cones in northern Idaho are presented. Descriptive notes on the immature stages of three important parasite species. Chelonus petrovae McComb (Hymenoptera: Braconidae), Apanteles starki Mason (Hymenoptera: Braconidae), and Psalidopteryx psilocorsiphaga Brooks (Diptera: Tachinidae) also are included. Correlations between the life stages of these three parasite species are made with phenological events in the host tree and associated plants at two of the four study plots.


1969 ◽  
Vol 101 (10) ◽  
pp. 1063-1069 ◽  
Author(s):  
Richard A. Goyer ◽  
John A. Schenk

AbstractTwelve species of parasitic insects were associated with Eucosma rescissoriana Heinrich in western white pine, Pinus monticola Douglas, cones in northern Idaho from 1963 to 1965. Pimplopterus n. sp. (Hymenoptera: Ichneumonidae), Chelonus petrovae McComb (Hymenoptera: Braconidae), Apanteles starki Mason (Hymenoptera: Braconidae), and Psalidopteryx psilocorsiphaga Brooks (Diptera: Tachinidac), in order of decreasing abundance, accounted for approximately 95% of the total parasitism. One additional species, Bracon rhyacioniae (Muesebeck) (Hymenoptera: Braconidae), was present locally in small numbers. The four major species increased their rates of parasitism from 9.4 to 40.9% in one area during this 3-year study and were shown to be effective natural control agents of E. rescissoriana in seed-production areas.


1966 ◽  
Vol 98 (3) ◽  
pp. 268-274 ◽  
Author(s):  
Max M. Ollieu ◽  
John A. Schenk

AbstractEucosma rescissoriana Heinrich is highly destructive to cones and seed of western white pine, Pinus monticola Douglas, and is distributed throughout the geographic range of this host species in northern Idaho. One generation is passed per year with emergence in late May. Egg and larval stages arc generally found in June and July; the pupal stage overwinters. Stand density and elevation were used as variables in ecological studies of population sine. All stages of E. rescissoriana were correlated to phenological data in 1962.


1999 ◽  
Vol 14 (1) ◽  
pp. 41-47 ◽  
Author(s):  
M. D. Meagher ◽  
R. S. Hunt

Abstract Survival, environmental damage, and juvenile height of 27 provenances of western white pine (Pinus monticola) in three plantation series were analyzed after 5 to 13 yr on site to assist in evaluating seed-transfer practices. Survival averaged 79.2% on nine sites in the "root-rot" series and 84.1% on six sites in the "provenance-test" series. Trends of survival on seed-source parameters differed between series, generally increasing with both elevation and latitude in the root-rot series, while generally decreasing with latitude in the provenance-test series. Analysis by seed zone (coast or interior) and plantation region (coast, southern interior, or northern interior) showed that coastal sources on interior sites caused much of these anomalies. Substantial environmental damage was found only on sites near to or beyond the species' northern limit. Differences in the trend of damage with source parameters were found between the test series: interior sources were damaged less than coastal sources on two root-rot sites, whereas interior sources were damaged more heavily than coastal sources on the provenance-test site exhibiting substantial damage. Damage increased with increasing provenance latitude and elevation in the root-rot series, while it dropped with increasing elevation in the "provenance-test" series. In general, taller seedlings in taller provenances were damaged. Coastal seed should not be used on interior sites, but transfer of seed from the BC interior to the BC coast seems safe. We recommend that the present limits for latitudinal transfer be doubled, except where late-spring-frost risk is high, and that elevational transfer of seeds for the interior zone be reduced by about half West. J. Appl. For. 14(1)41-47.


1985 ◽  
Vol 61 (6) ◽  
pp. 484-488 ◽  
Author(s):  
R. S. Hunt ◽  
J. F. Manville ◽  
E. von Rudloff ◽  
M. S. Lapp

Cluster analyses of relative terpene abundance in foliage of western white pine (Pinus monticola Dougl.) trees from throughout the Pacific Northwest geographic range of the species were produced. Terpene patterns were randomly distributed among populations; no geographic or site trends were evident. Although blister rust is devastating to stands, the gene pool is widely distributed and may well be preserved without establishing gene banks.About 40-50 trees selected at random would yield offspring with nearly all possible terpene patterns characteristic of the species and would thus constitute a broad genetic base. Therefore seed orchards do not necessarily need to be composed of many individuals, rather, they should contain highly selected individuals with multiple desirable traits including multiple blister rust resistance mechanisms. Key words: terpenes, dendrogram


1972 ◽  
Vol 104 (11) ◽  
pp. 1713-1715 ◽  
Author(s):  
Malcolm M. Furniss ◽  
R. D. Hungerford ◽  
E. F. Wicker

AbstractInsects present in western white pine blister rust cankers in northern Idaho were: two weevils, Cylindrocopturus n. sp. and Pissodes sp. near swartzi Hopk.; two bark beetles, Pityophthorus sp. near nitidulus (Mann.), and Procryphalus ? sp.; a drosophilid fly, Paracacoxenus guttatus Hardy and Wheeler; and a phycitid moth, Dioryctria abietivorella (Grote). Mites associated with insect infestation were: Lasioseius ? n. sp., Ameroseius longitrichus Hirschmann, and Histiogaster arborsignis Woodring.


Sign in / Sign up

Export Citation Format

Share Document