scholarly journals Differential Responses to Climate and Land-Use Changes in Threatened Chinese Taxus Species

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 766 ◽  
Author(s):  
Jianming Wang ◽  
Yin Wang ◽  
Jianmeng Feng ◽  
Chen Chen ◽  
Jie Chen ◽  
...  

Rapid climate and land-use changes have been considered as the foremost threat to global biodiversity. China contains more than 3500 threatened higher plants, whereas the relative influence of climate and land-use changes on these endangered plants have not been explored simultaneously under topographical constraints. Here, using Taxus plants as the case study genus, we simulated the distribution range of threatened species under three scenarios of current and future climate and land-use conditions under topographical constraints. We also measured the associated difference in the responses of Taxus species to climate and land-use changes. Our results demonstrated the substantial influence of climate and land-use changes on the distributions of Taxus species. However, we observed different responses of Taxus species to these environmental changes. The distribution range of T. cuspidate Siebold & Zuccarini and T. mairei Lemee & H. Léveillé would substantially shrink, whereas the habitat range of T. fuana Nan Li & R. R. Mill would sharply expand under RCP 8.5(Representative Concentration Pathway scenarios) scenario. Meanwhile, T. wallichiana Zuccarini and T. chinensis (Pilger) Florin would experience apparent range shifts. Furthermore, topographical factors played non-negligible roles in shaping species distributions, and modifying the influence of climate and land-use changes. Together, these results provide robust evidence that even threatened species will have multiple responses to climate and land-use changes (e.g., shrinking, expanding, shifting). Our findings highlight that taking species ecological traits, habitat characteristics, and topographical constraints into account might provide valuable insights into threatened species conservation in the face of global environmental changes.

2015 ◽  
Vol 747 ◽  
pp. 306-309 ◽  
Author(s):  
Norizawati Mohd Ayob ◽  
Norhasimah Ismail ◽  
Tarmiji Masron

Land use changes are a key driver in global environmental changes and had a significant impact on the climate at all scales. Various human activities that took place thousands of years ago have an impact on the earth's surface. Today, with the limited supply and high demand, land use crisis became a big issue for the most countries. Changes in land use are not actually only providing a history of the area, but it also describes the way of life of its local communities. In the interdisciplinary research for land use study, cultural values, knowledge and perceptions of knowledge has been recognized as a major factor in determining the adopted approach applied in land use management in that area. Therefore, this paper tries to evaluate the role and potential of the integration of TLEK and GIS in mapping the series of changes in land use.Keyword: Local knowledge, TLEK, land use mapping & conceptual framework


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Agnieszka Wnęk ◽  
Dawid Kudas ◽  
Premysl Stych

Land-use and cover change (LUCC) impacts global environmental changes. Therefore, it is crucial to obtain cross-national level LUCC data that represents past and actual LUCC. As urban areas exhibit the most significant dynamics of the changes, accompanied by such processes as urban sprawl, it seems desirable to take into account LUCC information from such areas to acquire national level information. The paper analyses land-use changes (LUCs) in urban areas in Czechia, Poland, and Slovakia. The analysis is based on functional urban area (FUA) data from the European Urban Atlas project for 2006 and 2012. The area of urbanised land grew at the expense of agricultural areas, semi-natural areas, and wetlands over the investigated period in all three countries. The authors determined LUC direction models in urban areas based on the identified land-use change. The proposed LUC direction models for the investigated period and area should offer national level LUC data for such purposes as modelling of future changes or can be the point of reference for planning analyses. The paper proposes the following models: mean model, median model, weighted mean model where the weight is the urbanised to vegetated area ratio, and weighted mean model where the weight is the share of urbanised areas. According to the proposed LUC models, areas considered as urbanised grow in FUAs on average in six years by 5.5900‰ in Czechia, 7.5936‰ in Poland, and 4.0769‰ in Slovakia. Additionally, the change models facilitated determination of a LUC dynamics ratio in each country. It reached the highest values in Poland and the lowest in Slovakia.


2019 ◽  
Vol 7 ◽  
Author(s):  
Paulo Borges ◽  
Lucas Lamelas-Lopez ◽  
Isabel Amorim ◽  
Anja Danielczak ◽  
Mário Boieiro ◽  
...  

Azorean volcanic cave biodiversity is under considerable pressure due to ongoing threats of pollution, land use change, touristic activities or climate change. In this contribution, we present the IUCN Red List profiles of 15 cave-adapted arthropod species, endemic to the Azorean archipelago, including species belonging to the speciose genus Trechus (Carabidae), which is represented in Azores by seven species. The objective of this paper is to assess all endemic Azorean cave-adapted species and advise on possible future research and conservation actions critical for the long-term survival of the most endangered species. Most species have a restricted distribution (i.e. occur in one or two caves), very small extent of occurrence (EOO) and a small area of occupancy (AOO). A continuing decline in the number of mature individuals is inferred from the ongoing cave habitat degradation. The two troglobitic species of the homopteran genus Cixius are in great danger of extinction due to major land-use changes in epigean habitats above their known localities. We suggest, as future measures of conservation, the regular monitoring of the species (every five years), the creation of additional protected caves, the limitation of several aggressive activities around the caves (e.g. decreasing pasture intensification) and in some cases the creation of fences in the entrance of the most important caves.


Author(s):  
Antonio Tomao ◽  
Barbara Ermini ◽  
Marcela Prokopov ◽  
Adriano Conte

Negative environmental changes generally addressed as ‘syndromes’ are evaluated in the context of Soil Degradation (SD) and interpreted by using a ‘Land-Use/Land Cover Changes’ (LULCCs) framework in order to disentangle ‘past trajectories’, ‘present patterns’, and ‘future changes’. This approach allows to discuss the potential impact on SD processes and it represents an informed basis for identifying measurable outcomes of SD. This study focuses on the case of Emilia Romagna, a region located in the North of Italy with high-value added agricultural productions. A multi-temporal analysis of land-use changes between 1954 and 2008 has been proposed, discussing the evolution of associated SD syndromes in Emilia Romagna. The contributing information have been used as a baseline for Sustainable Land Management (SLM) strategies. This framework of analysis provides useful tools to investigate and to monitor the effects of SD in the Mediterranean basin where several regions underwent common development patterns yelding global pathological symptoms of environmental degradation.


Author(s):  
Nkemdilim Maureen Ekpeni ◽  
Amidu Owolabi Ayeni

This chapter examines both concept of global hazard and disaster and its management in the lights of its vulnerability. It categorized the different types of hazards and disasters and their components. From the research findings, it is observed that hazards and disaster are two sides of a coin. They occur at the interface between human systems and natural events in our physical environments. This chapter highlights that the major environmental changes driving hazards and vulnerability to disasters are climate change, land-use changes, and degradation of natural resources. After presenting a typology of disasters and their magnitude globally, management of disaster has transited from just being a “response and relief”-centric approach to a mitigation and preparedness approach.


2020 ◽  
Author(s):  
Natasa Ravbar ◽  
Gregor Kovačič ◽  
Metka Petrič

<p>Environmental changes, such as alterations in precipitation and evapotranspiration regimes, changes in vegetation type, etc. are triggering direct impact on hydrological cycle through modified amounts and patterns of recharge conditions, as well as occurrence of more frequent and severe hydrometeorological events. Karst aquifers are particularly vulnerable to these effects due to highly dynamic hydrological processes. In this study, we were interested in studying the possibilities to observe changed hydrological behaviour of karst springs on a human timescale. Therefore, we focused on two examples in Slovenia, both regionally important for freshwater supply, agriculture and hydropower. The Unica spring mostly drains areas under moderate continental climate. Its catchment has been repeatedly and severely hit by natural disasters (e.g., ice break, bark beetle attack, windthrow) after 2014 causing large-scale forest disturbances. The catchment of Rižana spring, on the other hand, belongs to the moderate Submediterranean climate. There these types of disturbance did not occur in recent years (excluding some wildfires), but the catchment has been liable to substantial land use changes in the past six decades. For assessment of vegetation cover changes and large-scale disturbances in forests, historical digital orthophotos of the Surveying and Mapping Authority of the Republic of Slovenia since 1957 have been compared with the recent land use data provided by Ministry of Agriculture, Economy and Food and forest state database of Slovenian Forest Service. At the same time, hydrological data of the Unica (Hasberg gauging station) in the period 1962-2018 and Rižana springs (Kubed gauging station) in the period 1966-2018 and precipitation data from Postojna (period 1962-2018) and Podgrad (period 1966-2018) meteorological stations have been processed. Individual flood pulse events over the 57 years for Unica and 53 years for Rižana have been separated. For each flood pulse various information about precipitation amount and intensity, duration of discharge increase, its intensity and amplitude have been specified. We compared these findings with the calculated trends of meteorological and hydrological variables and also changes in land use. The impact of particular environmental change on discharge values of both springs has been evaluated, showing that both, climate and land-use changes, have considerable impact on hydrological regime of studied karst springs. In particular, altered duration of flood pulses increase, their amplitude and intensity have been observed, meaning that the most important issues of water availability that are crucial for water-dependant economic sectors are under threat.</p>


2019 ◽  
Vol 146 (2) ◽  
pp. 145-170
Author(s):  
Carla K. M. Nantke ◽  
Patrick J. Frings ◽  
Johanna Stadmark ◽  
Markus Czymzik ◽  
Daniel J. Conley

AbstractSi fluxes from the continents to the ocean are a key element of the global Si cycle. Due to the ability of coastal ecosystems to process and retain Si, the ‘coastal filter’ has the potential to alter Si fluxes at a global scale. Coastal zones are diverse systems, sensitive to local environmental changes, where Si cycling is currently poorly understood. Here, we present the first palaeoenvironmental study of estuarine biogenic silica (BSi) fluxes and silicon isotope ratios in diatoms (δ30Sidiatom) using hand-picked diatom frustules in two sediment cores (CBdist and CBprox) from the Chesapeake Bay covering the last 12000 and 8000 years, respectively. Constrained by the well-understood Holocene evolution of the Chesapeake Bay, we interpret variations in Si cycling in the context of local climate, vegetation and land use changes. δ30Sidiatom varies between + 0.8 and + 1.7‰ in both sediment cores. A Si mass balance for the Chesapeake Bay suggests much higher rates of Si retention (~ 90%) within the system than seen in other coastal systems. BSi fluxes for both sediment cores co-vary with periods of sea level rise (between 9500 and 7500 a BP) and enhanced erosion due to deforestation (between 250 and 50 a BP). However, differences in δ30Sidiatom and BSi flux between the sites emphasize the importance of the seawater/freshwater mixing ratios and locally variable Si inputs from the catchment. Further, we interpret variations in δ30Sidiatom and the increase in BSi fluxes observed since European settlement (~ 250 a BP) to reflect a growing human influence on the Si cycle in the Chesapeake Bay. Thereby, land use change, especially deforestation, in the catchment is likely the major mechanism.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Isabela Martins ◽  
Barbara Sanches ◽  
Philip Robert Kaufmann ◽  
Robert M. Hughes ◽  
Gilmar Bastos Santos ◽  
...  

Reservoirs are artificial ecosystems with multiple functions having direct and indirect benefits to humans; however, they also cause ecological changes and influence the composition and structure of aquatic biota. Our objectives were to: (1) assess the environmental condition of Nova Ponte Reservoir, Minas Gerais state, southeastern Brazil; and (2) determine how the aquatic biota respond to disturbances. A total of 40 sites in the littoral zone of the reservoir were sampled to characterize physical and chemical habitat, land use, and benthic macroinvertebrate and fish assemblages. The predominant type of land cover near the reservoir was natural vegetation. A total of 29 fish species and 39 macroinvertebrate taxa were collected, including eight alien species. Most sites had intermediate levels of human disturbance, however, high levels of degradation were associated with high proportions of alien species. Disturbances at multiple scales may alter natural patterns and processes, leading to environmental changes and damaging biological communities. Our results reinforce the importance of assessing reservoir ecological conditions at several scales. The study of land use, littoral zone physical habitat characteristics, water quality, and assemblage structure set the ground for proposing actions to rehabilitate and conserve aquatic ecosystems.


2016 ◽  
Vol 12 (1) ◽  
pp. 3-17
Author(s):  
Mario Morellón ◽  
Gaia Sinopoli ◽  
Adam Izdebski ◽  
Laura Sadori ◽  
Flavio Anselmetti ◽  
...  

AbstractA multiproxy analysis (sedimentology, geochemistry and pollen) of sediments recovered in the Butrint lagoon (Albania) allows us to reconstruct the environmental changes that occurred in the area during the 1st millenniumAD. In this paper, we compare these analytical results with the evidence provided by archaeological investigations carried out at the site of the Roman city of Butrint (surrounded by these lagoon waters) and in the city’s hinterlands. From this, we can say that different periods of farming and siltation (AD400–600 and 700–900) were accompanied by increased run-off and wetter conditions in the region. This coincided with the territorial and economic expansion of the Byzantine empire, suggesting the key role of trade in the profound land use changes experienced in Butrint.


Sign in / Sign up

Export Citation Format

Share Document