scholarly journals Vulnerability of Conifer Regeneration to Spruce Budworm Outbreaks in the Eastern Canadian Boreal Forest

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 850 ◽  
Author(s):  
Janie Lavoie ◽  
Miguel Montoro Girona ◽  
Hubert Morin

Spruce budworm (Choristoneura fumiferana) is the main defoliator of conifer trees in North American boreal forests, affecting extensive areas and causing marked losses of timber supplies. In 2017, spruce budworm affected more than 7 million ha of Eastern Canadian forest. Defoliation was particularly severe for black spruce (Picea mariana (Mill.) B.S.P.), one of the most important commercial trees in Canada. During the last decades, intensive forest exploitation practices have created vast stands of young balsam fir (Abies balsamea (L.) Mill.) and black spruce. Most research focused on the impacts of spruce budworm has been on mature stands; its effects on regeneration, however, have been neglected. This study evaluates the impacts of spruce budworm on the defoliation of conifer seedlings (black spruce and balsam fir) in clearcuts. We measured the cumulative and annual defoliation of seedlings within six clearcut black spruce stands in Quebec (Canada) that had experienced severe levels of defoliation due to spruce budworm. For all sampled seedlings, we recorded tree species, height class, and distance to the residual forest. Seedling height and species strongly influenced defoliation level. Small seedlings were less affected by spruce budworm activity. As well, cumulative defoliation for balsam fir was double that of black spruce (21% and 9%, respectively). Distance to residual stands had no significant effect on seedling defoliation. As insect outbreaks in boreal forests are expected to become more severe and frequent in the near future, our results are important for adapting forest management strategies to insect outbreaks in a context of climate change.

1993 ◽  
Vol 125 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Beresford L. Cadogan ◽  
Roger D. Scharbach

AbstractThe insecticide Foray 48B (Bacillus thuringiensis var. kurstaki Berliner) was applied undiluted at 30 BIU per ha to control spruce budworm, Choristoneura fumiferana (Clem.), in a mixed boreal forest stand of balsam fir, Abies balsamea (L.) Mill., and black spruce, Picea mariana (Mill.) B.S.P. When the treatment was timed to coincide with the early flushing of balsam fir shoots, the corrected budworm population reductions were 74 and 52% on balsam fir and black spruce, respectively. This treatment resulted in 19 and 8% defoliation on the two respective species. When the insecticide application was timed later to coincide with the late flushing of black spruce shoots the corrected population reductions were 93% on balsam fir and 72% on black spruce. Defoliation of the two species was 29 and 10% respectively, following this treatment. Larval survival on both species after the spray timed for black spruce (0.8 and 2.2 larvae per 45-cm branch on balsam fir and black spruce, respectively) was significantly less (P = 0.05) than that observed after the spray timed for balsam fir (4.6 and 4.2 larvae per 45-cm branch on the respective host species).The data indicate that the spray timed to correspond with the flushing of black spruce was generally more efficacious than the spray timed to impact on newly flushed balsam fir; nevertheless, the results raise the question as to how B. thuringiensis insecticides impact on early-instar budworm larvae when there is no preferred current year foliage on which the insects can feed.


2018 ◽  
Vol 48 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Alvaro Fuentealba ◽  
Solène Sagne ◽  
Deepa Pureswaran ◽  
Éric Bauce ◽  
Emma Despland

Establishing feeding sites is critical for the survival of neonate Lepidoptera larvae. Rapid foliar quality changes during leaf expansion create a narrow window of opportunity for establishment of early-spring feeders. We examined the effect of phenological synchrony between black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) and balsam fir (Abies balsamea (L.) Mill.) budbreak and spruce budworm (Choristoneura fumiferana (Clemens)) emergence on the feeding behaviour of young larvae and on overall larval growth and survival under laboratory conditions. We correlated these variables with bud development and foliar toughness during the growing season. Our results show that early-emerging second-instar larvae were unable to feed on either black spruce or balsam fir buds; budworm on balsam fir mined old foliage and exhibited good survival and performance, but those on black spruce remained on the foliar surface and suffered high mortality and low growth. In the second later-emerging cohort, bud feeding gradually increased on black spruce whereas it was already the predominant behaviour on balsam fir, and no differences in performance were observed between host species. Thus, black spruce budbreak constitutes a strict window of opportunity, since larvae are often unable to mine the old foliage. Our results suggest that mechanical toughness could be the obstacle preventing young larvae from mining old black spruce needles. Our findings confirm the importance of second-instar ecology in spruce budworm, suggesting that, if climate warming eventually results in an improvement in phenological synchrony between spruce budworm and black spruce, larval survival may increase.


1984 ◽  
Vol 116 (1) ◽  
pp. 101-102 ◽  
Author(s):  
O. N. Morris

Bacillus thuringiensis var. kurstaki (B.t.) is the most widely used biological control agent against the spruce budworm, Choristoneura fumiferana (Clem.), a major defoliator of coniferous forests. The technology of applying the bacterium, however, is still not fully developed and the strategy of applying single or split applications of B.t. in unmixed stands is still in question. Double applications are generally accepted as necessary in mixed stands of white spruce, Picea glauca (Moench) Voss, red spruce, P. rubens Sarg., black spruce, P. mariana (Mill.) BSP, and balsam fir, Abies balsamea (L.) Mill., due to difference in the phenological development of the host trees and of the budworm infesting them. Field trials were conducted at Mine Centre, Ontario, to compare the efficacies of double and single applications of B.t. against the budwonn infesting balsam fir stands.


2021 ◽  
Vol 4 ◽  
Author(s):  
Lorena Balducci ◽  
Philippe Rozenberg ◽  
Annie Deslauriers

In the long term, defoliation strongly decreases tree growth and survival. Insect outbreaks are a typical cause of severe defoliation. Eastern spruce budworm (Choristoneura fumiferana Clem.) outbreaks are one of the most significant disturbances of Picea and Abies boreal forests. Nevertheless, in boreal conifers, a 2-year defoliation has been shown to quickly improve tree water status, protect the foliage and decrease growth loss. It suggests that defoliation effects are time-dependent and could switch from favorable in the short term to unfavorable when defoliation duration exceeds 5–10 years. A better understanding of the effect of defoliation on stem radius variation during the needle flushing time-window could help to elucidate the relationships between water use and tree growth during an outbreak in the medium term. This study aims to assess the effects of eastern spruce budworm (Choristoneura fumiferana Clem.) defoliation and bud phenology on stem radius variation in black spruce [Picea mariana (Mill.) B.S.P.] and balsam fir [Abies balsamea (L.) Mill.] in a natural stand in Quebec, Canada. We monitored host and insect phenology, new shoot defoliation, seasonal stem radius variation and daytime radius phases (contraction and expansion) from 2016 to 2019. We found that defoliation significantly increased stem growth at the beginning of needle flushing. Needles flushing influenced the amplitude and duration of daily stem expansion and contraction, except the amplitude of stem contraction. Over the whole growing season, defoliation increased the duration of stem contraction, which in turn decreased the duration of stem expansion. However, the change (increase/decrease) of the duration of contraction/expansion reflects a reduced ability of the potential recovery from defoliation. Black spruce showed significantly larger 24-h cycles of stem amplitude compared to balsam fir. However, both species showed similar physiological adjustments during mild stress, preventing water loss from stem storage zones to support the remaining needles’ transpiration. Finally, conifers react to defoliation during a 4-year period, modulating stem radius variation phases according to the severity of the defoliation.


2006 ◽  
Vol 36 (7) ◽  
pp. 1631-1640 ◽  
Author(s):  
David Pothier ◽  
Daniel Mailly

Stand production and sustained yield calculations are largely affected by tree mortality, which can be caused by many factors such as competition, insect damage, or climatic events. In the eastern Canadian boreal forest, spruce budworm (Choristoneura fumiferana (Clem.)) defoliation can produce varying levels of mortality in balsam fir (Abies balsamea (L.) Mill.) stands. This mortality was estimated for the entire range of balsam fir in Quebec, Canada, using historical records of insect defoliation and permanent sample plot (PSP) inventories for the 1970–2003 period, which includes the last insect outbreak. A two-step approach was used to model balsam fir mortality at the stand level. The first step predicts the probability that all balsam fir trees within a PSP will survive during a given time interval. The second step quantifies the amount of mortality for PSP observation periods during which mortality actually occurred. The whole model shows that spruce budworm defoliation may account for between 6% and 100% of the merchantable volume lost due to mortality, depending on outbreak severity. A model evaluation made with an independent data set indicates that the model is unbiased, although the prediction error is relatively large at the stand level but decreases with increasing prediction horizon.


2020 ◽  
Vol 50 (6) ◽  
pp. 565-580
Author(s):  
Yuanyuan Wu ◽  
David A. MacLean ◽  
Chris Hennigar ◽  
Anthony R. Taylor

Defoliation level and site type are thought to influence tree response during spruce budworm (Choristoneura fumiferana (Clemens)) outbreaks. We determined the effects of four manual defoliation treatments (0%, 50%, 100%, and 100% + bud removal of current foliage) for 3 years on foliage production of balsam fir (Abies balsamea (L.) Mill.), black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.), and white spruce (Picea glauca (Moench) Voss) trees on four site-quality classes. After 3 years of defoliation and 2 years of recovery, foliage biomass was reduced by 34%–98%. During defoliation, the number of shoots generally increased and shoot length of spruce generally decreased, especially on rich sites. During recovery, the number of shoots increased substantially, shoot length decreased, and bud destruction reduced the number of shoots by about 50% compared with that of trees that received the 100% defoliation treatment. Defoliation did not substantially affect needle length. Trees on rich sites had two- to fourfold greater foliage production than trees on poor sites. Effects of site and defoliation differed among species, but site quality, especially nutrition, played an important role in production of shoots and needles and the tree’s ability to withstand defoliation. Black spruce had more limited ability to recover foliage biomass, only producing more shoots, whereas balsam fir and white spruce had stronger ability to recover needle and shoot length, respectively.


2004 ◽  
Vol 34 (11) ◽  
pp. 2351-2362 ◽  
Author(s):  
Wayne E MacKinnon ◽  
David A MacLean

The species composition of surrounding forest and site characteristics have been postulated to influence growth loss caused by eastern spruce budworm (Choristoneura fumiferana Clem.) defoliation. Forty spruce (Picea spp.) and balsam fir (Abies balsamea (L.) Mill.) stands located in north-central New Brunswick, Canada, were measured for defoliation and tree growth and used to determine the effects of surrounding forest (softwood, mixedwood), site (wet soil – nutrient poor; moist soil – nutrient rich), and species group (balsam fir, spruce) on growth reduction caused by spruce budworm. Stem analysis of six trees per stand (total 240 trees) determined mean specific volume increment (SVI) per year in 1973–1993. There was relatively little defoliation during the 1989–1993 measurement period, and regression analyses showed that SVI was significantly (p = 0.0299) related to mean defoliation for only one of eight treatment classes: balsam fir on moist–rich sites in mixedwood forests. However, two periods of earlier growth reduction were evident, and analysis of variance showed that balsam fir on wet–poor sites sustained 12% greater (p = 0.0071) reduction in SVI from 1987 to 1990 than balsam fir on moist–rich sites. White spruce (Picea glauca (Moench) Voss) sustained 13% greater (p = 0.0198) reduction in SVI from 1973 to 1978 than red spruce (Picea rubens Sarg.) – black spruce (Picea mariana (Mill.) BSP). Surrounding forest type did not significantly affect SVI reduction from 1973 to 1978 or from 1987 to 1990, but from 1973 to 1978 stands in softwood forest sustained 5%–8% more growth reduction than those in mixedwood forest.


2011 ◽  
Vol 41 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Marie-Josée Tremblay ◽  
Sergio Rossi ◽  
Hubert Morin

Despite their ecological importance, the role and effects of insect outbreaks on stand dynamics of the northern boreal forests in North America have still to be demonstrated. The study was conducted between the 51st and 52nd parallels in Quebec, Canada, to identify mechanisms governing regeneration of high-latitude stands by investigating variations in growth of trees during stand development. Chronologies of tree-ring width and individual dynamics of growth in height and volume were assessed in black spruce ( Picea mariana (Mill.) B.S.P) of one even-aged and five uneven-aged stands. Uneven-aged stands contained trees up to 340 years old and representing almost every age class. Several growth reductions were observed that were synchronized between stands and were characterized by high amplitudes but different percentages of affected trees. These reductions were followed by marked growth releases. Even if the absence of nonhost species prevented the building of chronologies that could confirm the origin of growth reductions, the findings suggested that spruce budworm ( Archips fumiferana Clemens [syn.: Choristoneura fumiferana (Clemens)]) outbreaks contribute to the formation and maintenance of the uneven-aged structure of older black spruce stands at high latitudes.


1961 ◽  
Vol 93 (2) ◽  
pp. 118-123 ◽  
Author(s):  
J. G. Pilon ◽  
J. R. Blais

Nearly all forest regions in the Province of Quebec where balsam fir (Abies balsamea (L.) Mill.) is an important tree component have been subjected to severe defoliation by the spruce budworm, Choristoneura fumiferana (Clem.), during the past 20 years. These outbreaks have followed an easterly direction beginning near the Ontario-Quebec border in 1939 and ending in the Gaspé Peninsula in 1958.


1986 ◽  
Vol 62 (2) ◽  
pp. 96-100 ◽  
Author(s):  
D. J. McRae

Recent spruce budworm (Choristoneura fumiferana [Clem.]) infestations have resulted in widespread areas of balsam fir (Abies balsamea [L.] Mill.) mortality in Ontario, and there is growing interest in reestablishing these areas quickly as productive forests. One technique being used is prescribed fire after a salvage and bulldozer tramping operation. A 445-ha prescribed burn was carried out under moderate fire danger conditions in northern Ontario. The site, which was covered by balsam fir fuel that had been killed by spruce budworm, was tramped to improve fire spread. Weather, fuel consumption, and fire effects are reported. The burn effectively reduced heavy surface fuel loadings and consequently planting on the site was easier. Key words: Prescribed burning, fire, spruce budworm. Choristoneura fumiferana, balsam fir, Abies balsamea, fuel consumption, site preparation, tramping, stand conversion.


Sign in / Sign up

Export Citation Format

Share Document