eastern spruce budworm
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 4 ◽  
Author(s):  
Lorena Balducci ◽  
Philippe Rozenberg ◽  
Annie Deslauriers

In the long term, defoliation strongly decreases tree growth and survival. Insect outbreaks are a typical cause of severe defoliation. Eastern spruce budworm (Choristoneura fumiferana Clem.) outbreaks are one of the most significant disturbances of Picea and Abies boreal forests. Nevertheless, in boreal conifers, a 2-year defoliation has been shown to quickly improve tree water status, protect the foliage and decrease growth loss. It suggests that defoliation effects are time-dependent and could switch from favorable in the short term to unfavorable when defoliation duration exceeds 5–10 years. A better understanding of the effect of defoliation on stem radius variation during the needle flushing time-window could help to elucidate the relationships between water use and tree growth during an outbreak in the medium term. This study aims to assess the effects of eastern spruce budworm (Choristoneura fumiferana Clem.) defoliation and bud phenology on stem radius variation in black spruce [Picea mariana (Mill.) B.S.P.] and balsam fir [Abies balsamea (L.) Mill.] in a natural stand in Quebec, Canada. We monitored host and insect phenology, new shoot defoliation, seasonal stem radius variation and daytime radius phases (contraction and expansion) from 2016 to 2019. We found that defoliation significantly increased stem growth at the beginning of needle flushing. Needles flushing influenced the amplitude and duration of daily stem expansion and contraction, except the amplitude of stem contraction. Over the whole growing season, defoliation increased the duration of stem contraction, which in turn decreased the duration of stem expansion. However, the change (increase/decrease) of the duration of contraction/expansion reflects a reduced ability of the potential recovery from defoliation. Black spruce showed significantly larger 24-h cycles of stem amplitude compared to balsam fir. However, both species showed similar physiological adjustments during mild stress, preventing water loss from stem storage zones to support the remaining needles’ transpiration. Finally, conifers react to defoliation during a 4-year period, modulating stem radius variation phases according to the severity of the defoliation.


2021 ◽  
Vol 97 (3) ◽  
pp. 271-276
Author(s):  
Torben Jensen ◽  
Jean-Martin Lussier

Natural disturbances such as pest outbreaks have a significant impact on forest dynamics and services, including the loss of mature stands. From a wood production perspective, these disturbances can lead to long-lasting imbalances in the overall age-class structure of the forest, potentially resulting in a shortage of mature harvestable stands. Researchers from Natural Resources Canada’s (NRCan) Canadian Forest Service (CFS) have made a timber supply analysis of the Dunière forest located in the centre of the Gaspé Peninsula (Québec). This region suffers from an age-class structure imbalance caused by an eastern spruce budworm (ESB) outbreak that ended in 1984, and is consequently facing a reduced annual allowable cut, leading to long- term implications for the regional forest sector. The authors suggest that partial harvesting – the removal of a proportion of timber in a mature stand several years before a final cut is carried out – is a promising opportunity in the ESB-affected area for mitigating mid-term timber supply shortages by smoothing the fibre supply over time.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 644
Author(s):  
Antoine-Olivier Lirette ◽  
Emma Despland

Changes during leaf ontogeny affect palatability to herbivores, such that many insects, including the eastern spruce budworm (Choristoneura fumiferana (Clem.)), are specialist feeders on growing conifer leaves and buds. Developmental constraints imply lower toughness in developing foliage, and optimal defense theory predicts higher investment in chemical defense in these vulnerable yet valuable developing leaves. We summarize the literature on the time course of defensive compounds in developing white spruce (Picea glauca (Moench) Voss) needles and report original research findings on the ontogeny of white spruce needle toughness. Our results show the predicted pattern of buds decreasing in toughness followed by leaves increasing in toughness during expansion, accompanied by opposite trends in water content. Toughness of mature foliage decreased slightly during the growing season, with no significant relationship with water content. Toughness of sun-grown leaves was slightly higher than that of shade-grown leaves. However, the literature review did not support the expected pattern of higher defensive compounds in expanding leaves than in mature leaves, suggesting that white spruce might instead exhibit a fast-growth low-defense strategy.


Physiology ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 174-182 ◽  
Author(s):  
Katie E. Marshall ◽  
Amanda D. Roe

The eastern spruce budworm, Choristoneura fumiferana, is one of North America’s most destructive forest insects. It survives the harsh winters by deploying both a sophisticated diapause program and a complex suite of cryoprotective molecules. The spruce budworm’s cryoprotective biochemistry could revolutionize organ storage and transplants. Here we review the latest in C. fumiferana overwintering physiology and identify emerging theoretical and practical questions that are open for exploration.


2021 ◽  
Author(s):  
Bastien Bellemin‐Noël ◽  
Stéphane Bourassa ◽  
Emma Despland ◽  
Louis De Grandpré ◽  
Deepa S. Pureswaran

2021 ◽  
Author(s):  
Skye Butterson ◽  
Amanda D Roe ◽  
Katie Elizabeth Marshall

High latitude insect populations must cope with extreme conditions, particularly cold temperatures. Insects use a variety of cold hardiness mechanisms to withstand this temperature stress, and these can drive geographic distributions through overwintering mortality. The degree of cold hardiness can be altered by two evolved responses: phenotypic plasticity and local adaptation. Phenotypic plasticity can occur within or between generations (transgenerational plasticity; TGP), and local adaptation can evolve through directional selection in response to regional climatic differences. We used the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) as a model to explore the role that variable winter temperatures play in inducing two aspects of plasticity in cold hardiness: TGP and local adaptation in phenotypic plasticity. This species is one of the most destructive boreal forest pests in North America, therefore accurately predicting overwintering survival is essential for effective management. While we found no evidence of TGP in cold hardiness, there was a long-term fitness cost to larvae that experienced repeated cold exposures. We also found evidence of local adaptation in both seasonal and short-term plasticity of cold hardiness. These findings provide evidence for the importance of phenotypic plasticity and local adaptation when modelling species distributions.


2020 ◽  
Author(s):  
Ksenia A. Glukhova ◽  
Julia D. Okulova ◽  
Bogdan S. Melnik

AbstractIce-binding proteins are expressed in the cells of some organisms, helping them to survive extremely low temperatures. One of the problems in study of such proteins is the difficulty of isolation and purification. For example, eight cysteine residues in cfAFP from Choristoneura fumiferana (the eastern spruce budworm) form intermolecular bridges during the overexpression of this protein. This impedes the process of the protein purification dramatically.In this work we designed a mutant form of ice-binding protein cfAFP, which is much more easy to isolate that the wild-type protein. The mutant form named mIBP83 did not lose the ability to bind to ice surface. Besides, observation of the processes of freezing and melting of ice in presence of mIBP83 showed that this protein affects the process of ice melting, increasing its melting temperature, and at least does not decrease the freezing temperature.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 659 ◽  
Author(s):  
Dan Quiring ◽  
Greg Adams ◽  
Andrew McCartney ◽  
Sara Edwards ◽  
J. David Miller

Wild eastern spruce budworm (Choristoneura fumiferana Clemens) were reared on white spruce (Picea glauca (Moench) Voss) trees, half of which had been previously inoculated with a native endophytic fungus, Phialocephala scopiformis DAOM 229536 Kowalski and Kehr (Helotiales, Ascomycota). Survival up to pupation and up to adult emergence was approximately 27% higher for budworm juveniles that developed on control trees compared to trees inoculated with the endophyte. The endophyte did not influence the size or sex of survivors but did reduce defoliation by approximately 30%. Reductions in defoliation on endophyte-inoculated versus control trees, due to reductions in survival of juvenile budworms, suggests that tree inoculations with P. scopiformis could play an important role in integrated management programs against the eastern spruce budworm.


Sign in / Sign up

Export Citation Format

Share Document