scholarly journals Effect of Soil Fauna on Home-Field Advantages of Litter Mass Loss and Nutrient Release in Different Temperate Broad-Leaved Forests

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1033 ◽  
Author(s):  
Xiaoqiang Li ◽  
Weihua Dong ◽  
Yang Song ◽  
Weijie Wang ◽  
Weiluan Zhan

The home-field advantage (HFA) of litter decomposition dynamics has been investigated intensively in different ecosystems with a wide variety of plant types. HFA mainly occurs due to the specialization of a soil organism. However, for the HFA, the linkages between litter mass loss, nutrient release, and soil faunal community are not fully understood. Thus, in this study, we performed a reciprocal litter transplant experiment using coarse and fine mesh litterbags in a Quercus mongolica Fisch. ex Ledeb. forest dominated by Q. mongolica (QM) and Acer pseudosieboldianum (Pax) Komarov (AP) and miscellaneous wood forests dominated by Juglans mandshurica Maxim. (JM) and Ulmus laciniata (Trautv.) Mayr. (UL). Results showed that the A. pseudosieboldianum litter displayed a significantly higher total abundance of Oribatida, Tomoceridae, and Entomobryidae at home than away from home after 7 months. However, all litters showed no significant difference in the HFA between the coarse mesh and fine mesh sizes during the 12-month experiment. A. pseudosieboldianum and J. mandshurica litters showed a significantly higher positive HFA for the C release in the coarse mesh than in the fine mesh litterbags after 7 months. Q. mongolica and J. mandshurica litters showed a significantly higher positive HFA for N release in the coarse mesh than in the fine mesh litterbags after 7 months. The A. pseudosieboldianum litter showed a significantly higher positive HFA for N release in the coarse mesh than in the fine mesh litterbags after 12 months. Q. mongolica and A. pseudosieboldianum litters showed a significantly higher positive HFA for S release in the coarse mesh than in the fine mesh litterbags after 7 and 12 months, respectively. However, A. pseudosieboldianum and Q. mongolica litters showed a significantly higher negative HFA for S release in the coarse mesh than in the fine mesh litterbags after 7 and 12 months, respectively. Our results illustrated that soil faunal specialization was found in the A. pseudosieboldianum litter only at home after 7 months. Soil fauna had a weak effect on the HFA of the litter mass losses during the 12-month experiment. Soil fauna drove the positive HFA for the N release of both the high- and low-quality litters. Soil fauna have a positive and negative HFA for S release in the low-quality litter.

2014 ◽  
Vol 44 (12) ◽  
pp. 1507-1514 ◽  
Author(s):  
Xiaoqiang Li ◽  
Xiuqin Yin ◽  
Zhenhai Wang ◽  
Weihong Fan

Soil fauna play a key role in litter decomposition as they influence the litter mass loss rate in terrestrial ecosystems. However, the interaction between decomposing litter and soil fauna has not been adequately addressed. We examine the interaction between different types of decomposing litter and soil fauna on the Betula ermanii Cham. (BE) forest floor of the Changbai Mountains, China, by measuring the mass loss of six litter species groups using litterbags with two sizes of mesh (4 mm and 0.01 mm) during a yearlong experiment. Soil fauna were identified at the order level. We found that soil fauna have a limited effect on litter mass loss at the initial stage of the experiment. Its positive effect became apparent at month 12 of the experiment. After 1 year, soil fauna increased the litter mass loss rate of the high-quality litter of Parasenecio komarovianus (Pojark.) Y.L. Chen (PK) by 7.02% and of the low-quality litter of Rhododendron aureum Georgi (RA) by 25.26%. BE + PK litter was associated with a significantly higher abundance of soil fauna at months 8 and 10 of the experiment and also with a significantly higher richness of soil fauna at month 10 of the experiment. At the end of the experiment, however, the Shannon–Wiener diversity index of soil fauna was not necessarily higher in mixed-species litter. Litter mixing did promote the abundance, richness, and diversity of soil fauna during the warm season in the high-quality litter substrate of BE + PK. Our results illustrate that the impact of soil fauna on the litter mass loss of both single- and mixed-species litterbags ranges from a limited impact to a positive impact as litter mass loss advances. The soil fauna contribute more to the litter mass loss of the low-quality litter with higher C to N ratios than to those with a low C to N ratio. The promoting effect of litter mixing on the soil faunal community composition is only short term and is dependent on substrate quality.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124605 ◽  
Author(s):  
Yan Peng ◽  
Wanqin Yang ◽  
Jun Li ◽  
Bin Wang ◽  
Chuan Zhang ◽  
...  

2021 ◽  
Author(s):  
Nathielly P. Martins ◽  
Lucia Fuchslueger ◽  
Katrin Fleischer ◽  
Kelly M. Andersen ◽  
Rafael L. Assis ◽  
...  

Abstract Purpose Large parts of the Amazon rainforest grow on weathered soils depleted in phosphorus and rock-derived cations. We tested the hypothesis that in this ecosystem, fine roots stimulate decomposition and nutrient release from leaf litter biochemically by releasing enzymes, and by exuding labile carbon stimulating microbial decomposers. Methods We monitored leaf litter decomposition in a Central Amazon tropical rainforest, where fine roots were either present or excluded, over 188 days and added labile carbon substrates (glucose and citric acid) in a fully factorial design. We tracked litter mass loss, remaining carbon, nitrogen, phosphorus and cation concentrations, extracellular enzyme activity and microbial carbon and nutrient concentrations. Results Fine root presence did not affect litter mass loss but significantly increased the loss of phosphorus and cations from leaf litter. In the presence of fine roots, acid phosphatase activity was 43.2% higher, while neither microbial stoichiometry, nor extracellular enzyme activities targeting carbon- and nitrogen-containing compounds changed. Glucose additions increased phosphorus loss from litter when fine roots were present, and enhanced phosphatase activity in root exclusions. Citric acid additions reduced litter mass loss, microbial biomass nitrogen and phosphorus, regardless of fine root presence or exclusion. Conclusions We conclude that plant roots release significant amounts of acid phosphatases into the litter layer and mobilize phosphorus without affecting litter mass loss. Our results further indicate that added labile carbon inputs (i.e. glucose) can stimulate acid phosphatase production by microbial decomposers, highlighting the potential importance of plant-microbial feedbacks in tropical forest ecosystems.


2021 ◽  
Vol 163 ◽  
pp. 103909
Author(s):  
Xiaoqiang Li ◽  
Weihua Dong ◽  
Yang Song ◽  
Weiluan Zhan ◽  
Yunsong Zheng

Pedobiologia ◽  
2019 ◽  
Vol 75 ◽  
pp. 38-51 ◽  
Author(s):  
Eduardo Nascimento ◽  
Filipa Reis ◽  
Filipe Chichorro ◽  
Cristina Canhoto ◽  
Ana Lúcia Gonçalves ◽  
...  

2013 ◽  
Vol 43 (12) ◽  
pp. 1127-1136 ◽  
Author(s):  
Björn Berg ◽  
Björn Erhagen ◽  
Maj-Britt Johansson ◽  
Lars Vesterdal ◽  
Mikaeel Faituri ◽  
...  

The aim of the present synthesis paper was to determine whether concentration changes and net release of manganese (Mn), as related to accumulated litter mass loss, are related to initial Mn concentration, mean annual temperature (MAT), mean annual precipitation (MAP), and tree genus or species. We also examined whether limit values for decomposition are related to initial litter Mn concentration, MAT, and MAP. We compiled 84 foliar litter decomposition studies, conducted mainly in boreal and temperate forest ecosystems, for which Mn dynamics had been well documented. Manganese concentration and amount were related to accumulated litter mass loss at each sampling time for each single study, as well as for (i) all studies combined (n = 748) and (ii) for species groups viz. Norway spruce (Picea abies (L.) Karst.) (n = 284), pine (Pinus) species (n = 330), and deciduous species (n = 214). The changes in Mn concentration with accumulated mass loss followed quadratic functions showing significantly higher Mn concentrations for Norway spruce vs. Scots pine (Pinus sylvestris L.) (p < 0.0001) and vs. deciduous species (p < 0.01), as well as significantly higher for deciduous species vs. Scots pine (p < 0.0001). Manganese release rates were different among the three species groups (p < 0.001). Still, rates were related to initial Mn concentrations (p < 0.001) for all litter types combined and for the three species groups. Norway spruce released Mn more slowly than pine and deciduous species. Rates were related to climatic factors for litter of Norway spruce and deciduous species. Limit values for all litter and for pine species separately were related to Mn (p < 0.001) and MAT (p < 0.001). For Norway spruce, limit values were related to MAT (p < 0.001) and MAP (p < 0.01). It appears that Norway spruce litter retains Mn more strongly in the litter structure, producing humus richer in Mn than does litter of pine and deciduous species.


Sign in / Sign up

Export Citation Format

Share Document