scholarly journals Dynamics and Vertical Distribution of Roots in European Beech Forests and Douglas Fir Plantations in Bulgaria

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1123 ◽  
Author(s):  
Lyudmila Lozanova ◽  
Miglena Zhiyanski ◽  
Elena Vanguelova ◽  
Svetla Doncheva ◽  
Martin P. Marinov ◽  
...  

Identifying patterns in roots spatial distribution and dynamics, and quantifying the root stocks, annual production and turnover rates at species level is essential for understanding plant ecological responses to local environmental factors and climate change. We studied selected root traits in four different stands, two European beech (Fagus sylvatica L.) forests and two Douglas fir (Pseudotsuga menziezii Mirb. Franco) plantations. Root system vertical distribution and dynamics were studied using sequential coring method and characterised into three root diameter size classes (0–2, 2–5 and 5–10 mm) sampled at three different soil depths (0–15, 15–30, 30–45 cm). Root annual production and turnover rates were analysed and quantified using Decision Matrix and Maximum-Minimum estimation approaches. The overall root mass (<10 mm diameter up to 0–45 cm soil depth) was higher in the beech forests than in the Douglas fir plantations. Some root traits, e.g., the overall root mass, the fine (0–2 mm) and small (2–5 mm) roots mass, differed significantly between the sampling plots rather than between the forest types. The root system revealed a tree species specific vertical distribution pattern. More than half of the fine and small roots biomass of the Douglas fir stands were allocated in the uppermost soil layer and decreased significantly with depths, while in the beech forests the biomass was more uniformly distributed and decreased gradually with increasing soil depth. Although both tree species belong to two different plant functional types and the stands were situated in two distantly located regions with different climatic and soil characteristics, we revealed similar trends in the root biomass and necromass dynamics, and close values for the annual production and turnover rates. The mean turnover rates for all studied stands obtained by sequential coring and Decision Matrix were 1.11 yr−1 and 0.76 yr−1 based on mean and maximum biomass data, respectively. They were similar to the averaged values suggested for Central and Northern European forests but higher compared to those reported from Southern Europe.

2020 ◽  
Author(s):  
Jing-Zhong Lu ◽  
Stefan Scheu

AbstractTree - soil interactions depend on environmental context. Plantations of trees may impact soil microorganisms more strongly under unfavorable environmental conditions, compromising long-term ecosystem services. To contextually understand the effects of tree species composition on soil microorganisms, we quantified structural and functional responses of soil microorganisms to forest types across environmental gradients using substrate-induced respiration and phospholipid fatty acid analyses. Five forest types were studied including pure stands of native European beech (Fagus sylvatica), range expanding Norway spruce (Picea abies), and non-native Douglas-fir (Pseudotsuga menziesii), as well as the two conifer - beech mixtures. We found that microbial functioning strongly depends on environmental conditions, in particular on soil nutrients. At nutrient-poor sites, both pure and mixed coniferous forests, but especially Douglas-fir forests, stressed soil microorganisms compared to beech forests. By contrast, microbial structure and functional indicators in beech forests varied little with site conditions, likely because beech provided high amounts of root-derived resources for microbial growth. The results indicate that, at nutrient-poor sites, long-term effects of planting exotic Douglas-fir on ecosystem functioning need further attention, but planting Douglas-fir at nutrient-rich sites may be of little concern from the perspective of microbial communities. Overall, the results point to the importance of root-derived resources in determining the structure and functioning of soil microbial communities, and document the sensitivity of soil microorganisms to planting tree species that may differ in the provisioning of these resources.


Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 282 ◽  
Author(s):  
Filip Oulehle ◽  
Michal Růžek ◽  
Karolina Tahovská ◽  
Jiří Bárta ◽  
Oldřich Myška

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Marcin K. Dyderski ◽  
Dariusz Struzik ◽  
...  

Forest ecosystems significantly contribute to the global organic carbon (OC) pool, exhibiting high spatial heterogeneity in this respect. Some of the components of the OC pool in a forest (woody aboveground biomass (wAGB), coarse root biomass (CRB)) can be relatively easily estimated using readily available data from land observation and forest inventories, while some of the components of the OC pool are very difficult to determine (fine root biomass (FRB) and soil organic matter (SOM) stock). The main objectives of our study were to: (1) estimate the SOM stock; (2) estimate FRB; and (3) assess the relationship between both biotic (wAGB, forest age, foliage, stand density) and abiotic factors (climatic conditions, relief, soil properties) and SOM stocks and FRB in temperate forests in the Western Carpathians consisting of European beech, Norway spruce, and silver fir (32 forest inventory plots in total). We uncovered the highest wAGB in beech forests and highest SOM stocks under beech forest. FRB was the highest under fir forest. We noted a considerable impact of stand density on SOM stocks, particularly in beech and spruce forests. FRB content was mostly impacted by stand density only in beech forests without any discernible effects on other forest characteristics. We discovered significant impacts of relief-dependent factors and SOM stocks at all the studied sites. Our biomass and carbon models informed by more detailed environmental data led to reduce the uncertainty in over- and underestimation in Cambisols under beech, spruce, and fir forests for mountain temperate forest carbon pools.


2001 ◽  
Vol 21 (2-3) ◽  
pp. 153-162 ◽  
Author(s):  
B. Zeller ◽  
M. Colin-Belgrand ◽  
E. Dambrine ◽  
F. Martin

2014 ◽  
Vol 45 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Alejandra Becerra ◽  
Norberto Bartoloni ◽  
Noelia Cofré ◽  
Florencia Soteras ◽  
Marta Cabello

2016 ◽  
Vol 403 (1-2) ◽  
pp. 343-360 ◽  
Author(s):  
Martin T. Schwarz ◽  
Sebastian Bischoff ◽  
Stefan Blaser ◽  
Steffen Boch ◽  
Fabrice Grassein ◽  
...  

2021 ◽  
Vol 125 ◽  
pp. 1-12
Author(s):  
Andrej Bončina ◽  
Vasilije Trifković ◽  
Živa Bončina

Modeling the height and diameter growth of trees is an important part of forest management. Growth models provide the basis for determining the thinning regime, target tree dimensions and optimal proportions of developmental phases of forest stands. We developed individual height growth models for dominant Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.) in two forest types (sessile oak-European beech forests and pre-Alpine silver fir-European beech forests). Based on the models, the site productivity index (SPI), defined as the dominant tree height at a diameter of 45 cm, was determined for spruce and beech in both forest types. Based on the diameter increment of the dominant trees, the age of trees in regard to their diameter was calculated, which was the basis for Height-Age modeling. The site productivity index (SPI) of spruce in sessile oak-beech forests and pre-Alpine silver fir-European beech forests is higher than that of beech: 31.3 and 29.7 vs 28.7 and 27.9, respectively. Estimated site indices (SI; dominant tree height at the age of 100 years) in sessile oak- European beech forests and pre-Alpine silver fir-European beech forests were 33.4 and 32.0 for spruce, and 29.0 and 27.0 for beech, respectively. Using the described procedure, it is possible to determine indices of site productivity of spruce and beech (SI and SPI) in the selected forest habitat types. Testing the procedure in other forest types and for other tree species is suggested.


2005 ◽  
Vol 2 (4) ◽  
pp. 1127-1157 ◽  
Author(s):  
K. Butterbach-Bahl ◽  
U. Berger ◽  
N. Brüggemann ◽  
J. Duyzer

Abstract. This study provides for the first time data on the stratification of NO and N2O production with soil depth under aerobic and anaerobic incubation conditions for different temperate forest sites in Germany (spruce, beech, clear-cut) and the Netherlands (Douglas fir). Results show that the NO and N2O production activity is highest in the forest floor and decreases exponentially with increasing soil depth. Under anaerobic incubation conditions NO and N2O production was in all soil layers up to 2-3 orders of magnitude higher then under aerobic incubation conditions. Furthermore, significant differences between sites could be demonstrated with respect to the magnitude or predominance of NO and N2O production. These were driven by stand properties (beech or spruce) or management (clear-cut versus control). With regard to CH4 the most striking result was the lack of CH4 uptake activity in soil samples taken from the Dutch Douglas fir site at Speulderbos, which is most likely a consequence of chronically high rates of atmospheric N deposition. In addition, we could also demonstrate that CH4 fluxes at the soil surface are obviously the result of simultaneously occurring uptake and production processes, since even under aerobic conditions a net production of CH4 in forest floor samples was found. The provided dataset will be very useful for the development and testing of process oriented models, since for the first time activity data stratified for several soil layers for N2O, NO, and CH4 production/oxidation activity for forest soils are provided.


Sign in / Sign up

Export Citation Format

Share Document