scholarly journals Improved Cellular Automaton for Stand Delineation

Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Weiwei Jia ◽  
Yusen Sun ◽  
Timo Pukkala ◽  
Xingji Jin

Airborne laser scanning (ALS) is becoming common in forest inventories. The data obtained by laser scanning contain the locations of the echoes of laser pulses. If these data are used in forest management, they need to be segmented into spatially continuous stands that are homogeneous in terms of stand attributes. Prior to segmentation, the laser pulse data can be processed into canopy height model, which shows the distance of canopy surface from the ground. This study used a cellular automaton with a canopy height model for the delineation of tree stands, considering three criteria: homogeneity of the stand in terms of growing stock attributes, stand area, and stand shape. A new method to consider stand shape in cellular automaton was presented. This method had a clear beneficial effect on the stand delineation result. Increasing weight of the shape criterion led to more roundish and less irregular stand shapes. Also, increasing weight of the stand area improved the shape of the stands. The cellular automaton led to average stand areas of 1–1.7 ha, depending on cell size and the parameters of the automaton. The cellular automaton explained 84.7–94.2% of the variation in maximum canopy height when 5 m × 5 m cells were used. Cell sizes of 5–10 m were found to result in the best stand delineation results.

2021 ◽  
Vol 13 (12) ◽  
pp. 2239
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Yuanshuo Hao ◽  
Bin Wang

As a common form of light detection and ranging (LiDAR) in forestry applications, the canopy height model (CHM) provides the elevation distribution of aboveground vegetation. A CHM is traditionally generated by interpolating all the first LiDAR echoes. However, the first echo cannot accurately represent the canopy surface, and the resulting large amount of noise (data pits) also reduce the CHM quality. Although previous studies concentrate on many pit-filling methods, the applicability of these methods in high-resolution unmanned aerial vehicle laser scanning (UAVLS)-derived CHMs has not been revealed. This study selected eight widely used, recently developed, representative pit-filling methods, namely first-echo interpolation, smooth filtering (mean, medium and Gaussian), highest point interpolation, pit-free algorithm, spike-free algorithm and graph-based progressive morphological filtering (GPMF). A comprehensive evaluation framework was implemented, including a quantitative evaluation using simulation data and an additional application evaluation using UAVLS data. The results indicated that the spike-free algorithm and GPMF had excellent visual performances and were closest to the real canopy surface (root mean square error (RMSE) of simulated data were 0.1578 m and 0.1093 m, respectively; RMSE of UAVLS data were 0.3179 m and 0.4379 m, respectively). Compared with the first-echo method, the accuracies of the spike-free algorithm and GPMF improved by approximately 23% and 22%, respectively. The pit-free algorithm and highest point interpolation method also have advantages in high-resolution CHM generation. The global smooth filter method based on the first-echo CHM reduced the average canopy height by approximately 7.73%. Coniferous forests require more pit-filling than broad-leaved forests and mixed forests. Although the results of individual tree applications indicated that there was no significant difference between these methods except the median filter method, pit-filling is still of great significance for generating high-resolution CHMs. This study provides guidance for using high-resolution UAVLS in forestry applications.


2018 ◽  
Vol 10 (10) ◽  
pp. 1562 ◽  
Author(s):  
Kathryn Fankhauser ◽  
Nikolay Strigul ◽  
Demetrios Gatziolis

Forest inventories are constrained by resource-intensive fieldwork, while unmanned aerial systems (UASs) offer rapid, reliable, and replicable data collection and processing. This research leverages advancements in photogrammetry and market sensors and platforms to incorporate a UAS-based approach into existing forestry monitoring schemes. Digital imagery from a UAS was collected, photogrammetrically processed, and compared to in situ and aerial laser scanning (ALS)-derived plot tree counts and heights on a subsample of national forest plots in Oregon. UAS- and ALS-estimated tree counts agreed with each other (r2 = 0.96) and with field data (ALS r2 = 0.93, UAS r2 = 0.84). UAS photogrammetry also reasonably approximated mean plot tree height achieved by the field inventory (r2 = 0.82, RMSE = 2.92 m) and by ALS (r2 = 0.97, RMSE = 1.04 m). The use of both nadir-oriented and oblique UAS imagery as well as the availability of ALS-derived terrain descriptions likely sustain a robust performance of our approach across classes of canopy cover and tree height. It is possible to draw similar conclusions from any of the methods, suggesting that the efficient and responsive UAS method can enhance field measurement and ALS in longitudinal inventories. Additionally, advancing UAS technology and photogrammetry allows diverse users access to forest data and integrates updated methodologies with traditional forest monitoring.


Agriculture ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 70 ◽  
Author(s):  
Niko Viljanen ◽  
Eija Honkavaara ◽  
Roope Näsi ◽  
Teemu Hakala ◽  
Oiva Niemeläinen ◽  
...  

Silage is the main feed in milk and ruminant meat production in Northern Europe. Novel drone-based remote sensing technology could be utilized in many phases of silage production, but advanced methods of utilizing these data are still developing. Grass swards are harvested three times in season, and fertilizer is applied similarly three times—once for each harvest when aiming at maximum yields. Timely information of the yield is thus necessary several times in a season for making decisions on harvesting time and rate of fertilizer application. Our objective was to develop and assess a novel machine learning technique for the estimation of canopy height and biomass of grass swards utilizing multispectral photogrammetric camera data. Variation in the studied crop stand was generated using six different nitrogen fertilizer levels and four harvesting dates. The sward was a timothy-meadow fescue mixture dominated by timothy. We extracted various features from the remote sensing data by combining an ultra-high resolution photogrammetric canopy height model (CHM) with a pixel size of 1.0 cm and red, green, blue (RGB) and near-infrared range intensity values and different vegetation indices (VI) extracted from orthophoto mosaics. We compared the performance of multiple linear regression (MLR) and a Random Forest estimator (RF) with different combinations of the CHM, RGB and VI features. The best estimation results with both methods were obtained by combining CHM and VI features and all three feature classes (CHM, RGB and VI features). Both estimators provided equally accurate results. The Pearson correlation coefficients (PCC) and Root Mean Square Errors (RMSEs) of the estimations were at best 0.98 and 0.34 t/ha (12.70%), respectively, for the dry matter yield (DMY) and 0.98 and 1.22 t/ha (11.05%), respectively, for the fresh yield (FY) estimations. Our assessment of the sensitivity of the method with respect to different development stages and different amounts of biomass showed that the use of the machine learning technique that integrated multiple features improved the results in comparison to the simple linear regressions. These results were extremely promising, showing that the proposed multispectral photogrammetric approach can provide accurate biomass estimates of grass swards, and could be developed as a low-cost tool for practical farming applications.


2020 ◽  
Vol 12 (6) ◽  
pp. 918 ◽  
Author(s):  
Diogo N. Cosenza ◽  
Luísa Gomes Pereira ◽  
Juan Guerra-Hernández ◽  
Adrián Pascual ◽  
Paula Soares ◽  
...  

Ground point filtering of the airborne laser scanning (ALS) returns is crucial to derive digital terrain models (DTMs) and to perform ALS-based forest inventories. However, the filtering calibration requires considerable knowledge from users, who normally perform it by trial and error without knowing the impacts of the calibration on the produced DTM and the forest attribute estimation. Therefore, this work aims at calibrating four popular filtering algorithms and assessing their impact on the quality of the DTM and the estimation of forest attributes through the area-based approach. The analyzed filters were the progressive triangulated irregular network (PTIN), weighted linear least-squares interpolation (WLS) multiscale curvature classification (MCC), and the progressive morphological filter (PMF). The calibration was established by the vertical DTM accuracy, the root mean squared error (RMSE) using 3240 high-accuracy ground control points. The calibrated parameter sets were compared to the default ones regarding the quality of the estimation of the plot growing stock volume and the dominant height through multiple linear regression. The calibrated parameters allowed for producing DTM with RMSE varying from 0.25 to 0.26 m, against a variation from 0.26 to 0.30 m for the default parameters. The PTIN was the least affected by the calibration, while the WLS was the most affected. Compared to the default parameter sets, the calibrated sets resulted in dominant height equations with comparable accuracies for the PTIN, while WLS, MCC, and PFM reduced the models’ RMSE by 6.5% to 10.6%. The calibration of PTIN and MCC did not affect the volume estimation accuracy, whereas calibrated WLS and PMF reduced the RMSE by 3.4% to 7.9%. The filter calibration improved the DTM quality for all filters and, excepting PTIN, the filters increased the quality of forest attribute estimation, especially in the case of dominant height.


Author(s):  
Anahita Khosravipour ◽  
Andrew K. Skidmore ◽  
Tiejun Wang ◽  
Martin Isenburg ◽  
Kourosh Khoshelham

Sign in / Sign up

Export Citation Format

Share Document