scholarly journals Overstory Effects on the Understory of Aleppo Pine Plantations—Implications for Ecosystem Restoration

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 664 ◽  
Author(s):  
Patrizia Tartarino ◽  
Roberto Greco ◽  
Joaquim S. Silva

At the end of the 19th century and along the first half of the 20th century, public policies in Mediterranean countries and elsewhere in Europe strongly promoted pine afforestation for land reclamation and wood production. In many cases, the transition to native forests, more resilient and more diverse, was also foreseen. This study aims to find the overstory characteristics that are best related to the understory of Aleppo pine (Pinus halepensis) plantations, to assist ecosystem restoration goals. We installed 33 circular plots in mature Aleppo pine plantations located in the southeastern Salento peninsula, Apulia, Italy. We measured overstory characteristics and the corresponding understory on these plots. We assessed the effects of overstory variables on understory development (plant density, plant height, and the Magini regeneration index) and diversity (species richness and the Shannon–Wiener index) using linear mixed models (LMM). Understory development and diversity were positively correlated with the Hart–Becking spacing index and negatively correlated with basal area and canopy cover, the three overstory variables that best explained variance. We used polynomial fitting and the subsequent derivation of these functions to determine the values of the Hart–Becking index and of the canopy cover that corresponded to the maximum development (33.7% and 84.6%, respectively) and diversity (32.6% and 86.5%, respectively) of the understory. Redundancy analysis (RDA) showed that late-successional species, including Quercus coccifera, were associated with higher levels of understory development and stand spacing. These results may assist in the restoration of native ecosystems in Aleppo pine plantations installed in similar ecological conditions.

2020 ◽  
Vol 21 (6) ◽  
Author(s):  
Malika Rached Kanouni ◽  
Insaf Hani ◽  
Ratiba BOUSBA ◽  
Amina Beldjazia ◽  
Hichem KHAMAR

Abstract. Rached-Kanouni M, Hani I, Bousba R, Beldjazia A, Khammar H. 2020. Structural variability of Aleppo pine stands in two forests in northeastern Algeria. Biodiversitas 21: 2848-2853. The layout of the stand can be described as the width of the trees, their reciprocal locations, diametric distinction and height. The goal of this study is to recognize changes in the Pinus halepensis spatial and demographic systems in two Beni Oudjana and Chettaba Forests, located in northeast Algeria. An inventory of trees in these forest formations with P. halepensis dominance was carried out based on dendrometric parameters such as total height, tree diameter at dbh ≥ 5 cm, basal area, total volume, etc., as well as the number of trees in the forest. Tree diameter and height measurements were made on 12 rectangular plots (20 m × 20 m), located in both forests. The results obtained show that the mean stand density, mean diameter, basal area and total volume are higher in Chettaba Forest, the values attributed to these parameters are respectively (422 trees/ha, 27.07 cm, 26, 86 m2, 251.63 m3); while the total height and regeneration rate show significantly higher values in Beni Oudjana Forest (18.97 m, 607 individuals/ha). The structure in diameter and height of the species is bell-shaped to asymmetrically positive with a predominance of small diameter individuals in the Chettaba forest. On the other hand, in the Beni Oudjana Forest, the structure is ‘L’ shaped, showing a predominance of very small diameter individuals. These results indicate that the low regeneration rate of P. halepensis in the Chettaba Forest is due to anthropogenic pressures that favor the degradation of this forest.


2018 ◽  
Vol 8 (1) ◽  
pp. 22-27 ◽  
Author(s):  
S. Sprintsin ◽  
M. Shapiro ◽  
M. Sprintsin ◽  
R. Zaidenberg ◽  
E. Denisyuk

2015 ◽  
Vol 45 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Everton José ALMEIDA ◽  
Flávio LUIZÃO ◽  
Domingos de Jesus RODRIGUES

Nutrient recycling in the forest is linked to the production and decomposition of litter, which are essential processes for forest maintenance, especially in regions of nutritionally poor soils. Human interventions in forest such as selecttive logging may have strong impacts on these processes. The objectives of this study were to estimate litterfall production and evaluate the influence of environmental factors (basal area of vegetation, plant density, canopy cover, and soil physicochemical properties) and anthropogenic factors (post-management age and exploited basal area) on this production, in areas of intact and exploited forest in southern Amazonia, located in the northern parts of Mato Grosso state. This study was conducted at five locations and the average annual production of litterfall was 10.6 Mg ha-1 year-1, higher than the values for the Amazon rainforest. There were differences in litterfall productions between study locations. Effects of historical logging intensity on litterfall production were not significant. Effects of basal area of vegetation and tree density on litterfall production were observed, highlighting the importance of local vegetation characteristics in litterfall production. This study demonstrated areas of transition between the Amazonia-Cerrado tend to have a higher litterfall production than Cerrado and Amazonia regions, and this information is important for a better understanding of the dynamics of nutrient and carbon cycling in these transition regions.


2001 ◽  
Vol 27 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Andreas Papadopoulos ◽  
Françoise Serre-Bachet ◽  
Lucien Tessier

2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


2001 ◽  
Vol 49 (3) ◽  
pp. 179-186
Author(s):  
ELENA PAOLETTI ◽  
ROBERTO CALAMASSI ◽  
SARA STRATI

2021 ◽  
Vol 13 (16) ◽  
pp. 3260
Author(s):  
Peder K. Schmitz ◽  
Hans J. Kandel

Predicting soybean [Glycine max (L.) Merr.] seed yield is of interest for crop producers to make important agronomic and economic decisions. Evaluating the soybean canopy across a range of common agronomic practices, using canopy measurements, provides a large inference for soybean producers. The individual and synergistic relationships between fractional green canopy cover (FGCC), photosynthetically active radiation (PAR) interception, and a normalized difference vegetative index (NDVI) measurements taken throughout the growing season to predict soybean seed yield in North Dakota, USA, were investigated in 12 environments. Canopy measurements were evaluated across early and late planting dates, 407,000 and 457,000 seeds ha−1 seeding rates, 0.5 and 0.8 relative maturities, and 30.5 and 61 cm row spacings. The single best yield predictor was an NDVI measurement at R5 (beginning of seed development) with a coefficient of determination of 0.65 followed by an FGCC measurement at R5 (R2 = 0.52). Stepwise and Lasso multiple regression methods were used to select the best prediction models using the canopy measurements explaining 69% and 67% of the variation in yield, respectively. Including plant density, which can be easily measured by a producer, with an individual canopy measurement did not improve the explanation in yield. Using FGCC to estimate yield across the growing season explained a range of 49% to 56% of yield variation, and a single FGCC measurement at R5 (R2 = 0.52) being the most efficient and practical method for a soybean producer to estimate yield.


2013 ◽  
Vol 58 (3) ◽  
pp. 209-215
Author(s):  
Mahdi Faravani ◽  
Behjat Salari ◽  
Mostafa Heidari ◽  
Mohammad Kashki ◽  
Barat Gholami

In order to understand the effect of organic fertilizer on yield of anise, an experiment was conducted in the form of split-plot in randomized complete block design with three replications in Mashhad, Khorasan Agriculture and Natural Resource Research Center. Four treatments of fertilization: the control, vermicompost - 5 t/ha, cow manure - 25 t/ha, and mineral fertilizer (NPK) - 60 kg/ha (the same rate of each nutrient) were applied as the main factor. The second factor was plant density, applied at three levels: 17, 25, and 50 plants/m2. The results showed a significant effect of fertilizer on the number of umbels per plant, number of umbellets per umbel and canopy cover. Plant density had a significant effect on grain yield, biological yield, the number of lateral branches, essential oil percentage and yield of essential oil. Seed and essential oil yield were the highest in the case of the application of vermicompost and plant densities of 50 and 25 plants/m2 respectively.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1470
Author(s):  
Inmaculada Bautista ◽  
Luis Lado-Monserrat ◽  
Cristina Lull ◽  
Antonio Lidón

In order to assess the sustainability of silvicultural treatments in semiarid forests, it is necessary to know how they affect the nutrient dynamics in the forest. The objective of this paper is to study the effects of silvicultural treatments on the net N mineralization and the available mineral N content in the soil after 13 years following forest clearings. The treatments were carried out following a randomized block design, with four treatments and two blocks. The distance between the two blocks was less than 3 km; they were located in Chelva (CH) and Tuéjar (TU) in Valencia, Spain. Within each block, four experimental clearing treatments were carried out in 1998: T0 control; and T60, T75 and T100 where 60%, 75% and 100 of basal area was eliminated, respectively. Nitrogen dynamics were measured using the resin tube technique, with disturbed samples due to the high stoniness of the plots. Thirteen years after the experimental clearings, T100, T75 and T60 treatments showed a twofold increase in the net mineralization and nitrification rates with respect to T0 in both blocks (TU and CH). Within the plots, the highest mineralization was found in sites with no plant cover followed by those covered by undergrowth. These results can be explained in terms of the different litterfall qualities, which in turn are the result of the proportion of material originating from Pinus halepensis Mill. vs. more decomposable undergrowth residues.


Sign in / Sign up

Export Citation Format

Share Document