scholarly journals Impacts of Climate Change on Wildfires in Central Asia

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 802 ◽  
Author(s):  
Xuezheng Zong ◽  
Xiaorui Tian ◽  
Yunhe Yin

This study analyzed fire weather and fire regimes in Central Asia from 2001–2015 and projected the impacts of climate change on fire weather in the 2030s (2021–2050) and 2080s (2071–2099), which would be helpful for improving wildfire management and adapting to future climate change in the region. The study area included five countries: Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and Turkmenistan. The study area could be divided into four subregions based on vegetation type: shrub (R1), grassland (R2), mountain forest (R3), and rare vegetation area (R4). We used the modified Nesterov index (MNI) to indicate the fire weather of the region. The fire season for each vegetation zone was determined with the daily MNI and burned areas. We used the HadGEM2-ES global climate model with four scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) to project the future weather and fire weather of Central Asia. The results showed that the fire season for shrub areas (R1) was from 1 April to 30 November, for grassland (R2) was from 1 March to 30 November, and for mountain forest (R3) was from 1 April to 30 October. The daily burned areas of R1 and R2 mainly occurred in the period from June–August, while that of R3 mainly occurred in the April–June and August–October periods. Compared with the baseline (1971–2000), the mean daily maximum temperature and precipitation, in the fire seasons of study area, will increase by 14%–23% and 7%–15% in the 2030s, and 21%–37% and 11%–21% in the 2080s, respectively. The mean MNI will increase by 33%–68% in the 2030s and 63%–146% in the 2080s. The potential burned areas of will increase by 2%–8% in the 2030s and 3%–13% in the 2080s. Wildfire management needs to improve to adapt to increasing fire danger in the future.

2019 ◽  
Author(s):  
Aynalem T. Tsegaw ◽  
Marie Pontoppidan ◽  
Erle Kristvik ◽  
Knut Alfredsen ◽  
Tone M. Muthanna

Abstract. Climate change is one of the greatest threats to the World's environment. In Norway, the change will strongly affect the pattern, frequency and magnitudes of stream flows. However, it is highly challenging to quantify to what extent it will affect flow patterns and floods from small ungauged rural catchments due to unavailability or inadequacy of hydro-meteorological data for the calibration of hydrological models and tailoring methods to a small-scale level. To provide meaningful climate impact studies at small catchments, it is therefore beneficial to use high spatial and temporal resolution climate projections as input to a high-resolution hydrological model. Here we use such a model chain to assess the impacts of climate change on flow patterns and frequency of floods in small ungauged rural catchments in western Norway using a new high-resolution regional climate projection, with improved performance with regards to the precipitation distribution, and the regionalized hydrological model (Distance Distribution Dynamics) between the reference period (1981–2011) and a future period (2071–2100). The FDCs of all study catchments show there will be more wetter periods in the future than the reference period. The results also show that in the future period, the mean annual flow increases by 16.5 % to 33.3 %, and there will be an increase in the mean autumn, mean winter and mean spring flows ranging from 4.3 % to 256.3 %. The mean summer flow decreases by 7.2 % to 35.2 %. The mean annual maximum floods increase by 28.9 % to 38.3 %, and floods of 2 to 200 years return periods increase by 16.1 % to 42.7 %. The findings of this study could be of practical use to regional decision-makers if considered alongside other previous and future findings.


2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2020 ◽  
Vol 20 (8) ◽  
pp. 2133-2155
Author(s):  
Aynalem T. Tsegaw ◽  
Marie Pontoppidan ◽  
Erle Kristvik ◽  
Knut Alfredsen ◽  
Tone M. Muthanna

Abstract. Climate change is one of the greatest threats currently facing the world's environment. In Norway, a change in climate will strongly affect the pattern, frequency, and magnitudes of stream flows. However, it is challenging to quantify to what extent the change will affect the flow patterns and floods from small rural catchments due to the unavailability or inadequacy of hydro-meteorological data for the calibration of hydrological models and due to the tailoring of methods to a small-scale level. To provide meaningful climate impact studies at the level of small catchments, it is therefore beneficial to use high-spatial- and high-temporal-resolution climate projections as input to a high-resolution hydrological model. In this study, we used such a model chain to assess the impacts of climate change on the flow patterns and frequency of floods in small ungauged rural catchments in western Norway. We used a new high-resolution regional climate projection, with improved performance regarding the precipitation distribution, and a regionalized hydrological model (distance distribution dynamics) between a reference period (1981–2011) and a future period (2070–2100). The flow-duration curves for all study catchments show more wet periods in the future than during the reference period. The results also show that in the future period, the mean annual flow increases by 16 % to 33 %. The mean annual maximum floods increase by 29 % to 38 %, and floods of 2- to 200-year return periods increase by 16 % to 43 %. The results are based on the RCP8.5 scenario from a single climate model simulation tailored to the Bergen region in western Norway, and the results should be interpreted in this context. The results should therefore be seen in consideration of other scenarios for the region to address the uncertainty. Nevertheless, the study increases our knowledge and understanding of the hydrological impacts of climate change on small catchments in the Bergen area in the western part of Norway.


2020 ◽  
Author(s):  
Geert Jan van Oldenborgh ◽  
Folmer Krikken ◽  
Sophie Lewis ◽  
Nicholas J. Leach ◽  
Flavio Lehner ◽  
...  

Abstract. Disastrous bushfires during the last months of 2019 and January 2020 affected Australia, raising the question to what extent the risk of these fires was exacerbated by anthropogenic climate change. To answer the question for southeastern Australia, where fires were particularly severe, affecting people and ecosystems, we use a physically-based index of fire weather, the Fire Weather Index, long-term observations of heat and drought, and eleven large ensembles of state-of-the-art climate models. In agreement with previous analyses we find that heat extremes have become more likely by at least a factor two due to the long-term warming trend. However, current climate models overestimate variability and tend to underestimate the long-term trend in these extremes, so the true change in the likelihood of extreme heat could be larger. We do not find an attributable trend in either extreme annual drought or the driest month of the fire season September–February. The observations, however, show a weak drying trend in the annual mean. Finally, we find large trends in the Fire Weather Index in the ERA5 reanalysis, and a smaller but significant increase by at least 30 % in the models. The trend is mainly driven by the increase of temperature extremes and hence also likely underestimated. For the 2019/20 season more than half of the July–December drought was driven by record excursions of the Indian Ocean dipole and Southern Annular Mode. These factors are included in the analysis. The study reveals the complexity of the 2019/20 bushfire event, with some, but not all drivers showing an imprint of anthropogenic climate change.


Sign in / Sign up

Export Citation Format

Share Document