scholarly journals Are Secondary Forests Ready for Climate Change? It Depends on Magnitude of Climate Change, Landscape Diversity and Ecosystem Legacies

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 965
Author(s):  
Lee E. Frelich ◽  
Kalev Jõgiste ◽  
John Stanturf ◽  
Aris Jansons ◽  
Floortje Vodde

In this review and synthesis paper, we review the resilience of secondary forests to climate change through the lenses of ecosystem legacies and landscape diversity. Ecosystem legacy of secondary forests was categorized as continuous forest, non-continuous forest, reassembled after conversion to other land uses, and novel reassembled forests of non-native species. Landscape diversity, including landforms that create varied local climatic and soil conditions, can buffer changing climate to some extent by allowing species from warmer climates to exist on warm microsites, while also providing refugial locations for species that grow in cool climates. We present five frames that allow forest managers to visualize a trajectory of change in the context of projected regional climate change, which are: Frame 1 (persistence), keep the same dominant tree species with little change; Frame 2 (moderate change), keep the same tree species with large changes in relative abundance; Frame 3 (forest biome change), major turnover in dominant tree species to a different forest biome; Frame 4 (forest loss), change from a forest to a non-forest biome; and Frame 5 (planted novel ecosystem), establish a novel ecosystem to maintain forest. These frames interact with ecosystem legacies and landscape diversity to determine levels of ecosystem resilience in a changing climate. Although forest readiness to adapt to Frame 1 and 2 scenarios, which would occur with reduced greenhouse gas emissions, is high, a business as usual climate change scenario would likely overwhelm the capacity of ecosystem legacies to buffer forest response, so that many forests would change to warmer forest biomes or non-forested biomes. Furthermore, the interactions among frames, legacies, and landscape diversity influence the transient dynamics of forest change; only Frame 1 leads to stable endpoints, while the other frames would have transient dynamics of change for the remainder of the 21st century.

2022 ◽  
Vol 4 ◽  
Author(s):  
Cristián Frêne ◽  
Mariela Núñez-Ávila ◽  
Ben Castro ◽  
Juan J. Armesto

Rainfall partitioning in secondary forests from southern Chile is relevant in the climate change scenario, in which a 30% reduction in summer precipitation has been projected for the temperate region. Logging and degradation of old-growth forests has resulted in extensive secondary forests, over large areas of the Chiloé Archipelago as well as the mainland. These secondary forests are simple tree communities, dominated by two broad-leaved tree species, evergreen Drimys winteri and Nothofagus nitida, and have the potential to provide multiple benefits to society, including water provision, soil protection, and wood-derived products. Here, we ask how southern South American secondary rainforests modulate rainwater redistribution considering precipitation partitioning. We evaluated the seasonality of throughfall and stemflow components of precipitation, to assess ecohydrological processes for water regulation in a climate change context, where summer droughts have been more frequent in the last decade. The partitioning of gross rainfall (TP) into throughfall (TH), stemflow (ST), and canopy interception (IN) in relation to forest structure, was assessed in four forest plots (400 m2 each) in Senda Darwin Biological Station, Chiloé. TH and ST were measured seasonally for 35 rainfall events from 2019 to 2021. IN water losses were estimated from the mass balance equation. Results indicate that the secondary rainforest intercepts 33% of TP (990 mm of the total monitored), where 59% of the volume corresponds to TH and 7% to ST, which taken together account for nearly 100% the rainwater that reaches the forest floor. Canopy IN varied seasonally from 25 to 40% of total rainfall, with maximum values occurring in the growing season (spring-summer). We found no statistical relation between ST and forest structural parameters (DBH, Basal Area). We explored the contribution of the two dominant tree species to ST and discuss the results in a climate change context. Finally, we propose to incorporate this hydrologic knowledge into adaptive forest management strategies to maximize ecosystem benefits to people. If these ecosystems were properly managed, they have the potential to provide multiple benefits to society within this century, such as water provision and soil protection in addition to carbon sequestration in biomass.


2010 ◽  
Vol 18 (NA) ◽  
pp. 279-289 ◽  
Author(s):  
Benoit Lafleur ◽  
David Paré ◽  
Alison D. Munson ◽  
Yves Bergeron

Plant species distribution and plant community composition vary along environmental gradients. At the continental scale, climate plays a major role in determining plant distribution, while at the local and regional scales vegetation patterns are more strongly related to edaphic and topographic factors. The projected global warming and alteration of the precipitation regime will influence tree physiology and phenology, and is likely to promote northward migration of tree species. However the influence of soil characteristics on tree species migration is not as well understood. Considering the broad tolerance of most tree species to variations in soil factors, soils should not represent a major constraint for the northward shift of tree species. However, locally or regionally, soil properties may constrain species migration. Thus, while climate change has the potential to induce a northward migration of tree species, local or regional soil properties may hinder their migratory response. These antagonistic forces are likely to slow down potential tree migration in response to climate change. Because tree species respond individualistically to climate variables and soil properties, new tree communities are likely to emerge from climate change.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1127
Author(s):  
Vojtěch Hájek ◽  
Stanislav Vacek ◽  
Zdeněk Vacek ◽  
Jan Cukor ◽  
Václav Šimůnek ◽  
...  

Scree forests with large numbers of protected plants and wildlife are seriously threatened by climate change due to more frequent drought episodes, which cause challenges for very stony, shallow soils. The effect of environmental factors on the radial growth of five tree species—European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst.), sycamore maple (Acer pseudoplatanus L.), European ash (Fraxinus excelsior L.), and mountain elm (Ulmus glabra Huds.)—was studied in the mixed stands (105–157 years) in the western Krkonoše Mountains (Czech Republic) concerning climate change. These are communities of maple to fir beechwoods (association Aceri-Fagetum sylvaticae and Luzulo-Abietetum albae) on ranker soils at the altitude 590–700 m a.s.l. Production, structure, and biodiversity were evaluated in seven permanent research plots and the relationships of the radial growth (150 cores) to climatic parameters (precipitation, temperature, and extreme conditions) and air pollution (SO2, NOX, ozone exposure). The stand volume reached 557–814 m3 ha−1 with high production potential of spruce and ash. The radial growth of beech and spruce growing in relatively favorable habitat conditions (deeper soil profile and less skeletal soils) has increased by 16.6%–46.1% in the last 20 years. By contrast, for sycamore and ash growing in more extreme soil conditions, the radial growth decreased by 12.5%–14.6%. However, growth variability increased (12.7%–29.5%) for all tree species, as did the occurrence of negative pointer years (extremely low radial growth) in the last two decades. The most sensitive tree species to climate and air pollution were spruce and beech compared to the resilience of sycamore and ash. Spectral analysis recorded the largest cyclical fluctuations (especially the 12-year solar cycle) in spruce, while ash did not show any significant cycle processes. The limiting factors of growth were droughts with high temperatures in the vegetation period for spruce and late frosts for beech. According to the degree of extreme habitat conditions, individual tree species thus respond appropriately to advancing climate change, especially to an increase in the mean temperature (by 2.1 °C), unevenness in precipitation, and occurrence of extreme climate events in the last 60 years.


Climate ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 104
Author(s):  
Giulia Ulpiani ◽  
Michele Zinzi

Planning for climate change adaptation is among the most complex challenges cities are facing today [...]


2015 ◽  
Vol 342 ◽  
pp. 21-29 ◽  
Author(s):  
M.M. Carón ◽  
P. De Frenne ◽  
J. Brunet ◽  
O. Chabrerie ◽  
S.A.O. Cousins ◽  
...  

2016 ◽  
Vol 32 (7) ◽  
pp. 1327-1346 ◽  
Author(s):  
Louis R. Iverson ◽  
Frank R. Thompson ◽  
Stephen Matthews ◽  
Matthew Peters ◽  
Anantha Prasad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document