scholarly journals Stand Structural Diversity and Species with Leaf Nitrogen Conservation Drive Aboveground Carbon Storage in Tropical Old-Growth Forests

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 994
Author(s):  
Genzhu Wang ◽  
Yuguo Liu ◽  
Xiuqin Wu ◽  
Danbo Pang ◽  
Xiao Yang ◽  
...  

Tropical old-growth forests are essential for global carbon regulation. Although there is increasing evidence that species and functional diversity, stand structural diversity, functional compositions, and elevation play roles in ecosystem functioning, the relative strengths of these drivers and the underlying mechanisms (mass-ratio hypothesis or niche complementarity hypothesis) are not clear. Aboveground carbon storage, species diversity, stand structural diversity, community-weighted mean (CWM), and functional diversity (FDvar) of 12 leaf traits were analyzed using data from 56 old-growth forest communities in the Dawei Mountain area of Southwest China. Multiple regression models were used to test the relative importance of the predictor variables and the structural equation model was used to explore the direct and indirect influences on aboveground carbon storage. High structural diversity moderately enhanced aboveground carbon storage. CWM leaf nitrogen concentration in young leaves weakly affected aboveground carbon storage. Our final multiple regression model showed that aboveground carbon storage is mostly affected by diameter at breast height (DBH) diversity, followed by FDvar of dry matter concentration in mature leaves and CWM nitrogen concentration in young leaves. The structural equation model indicated that elevation negatively affects aboveground carbon storage via diameter at breast height (DBH) diversity. Our results suggest that niche complementarity effects moderately drive aboveground carbon storage in tropical old-growth forests, but do not fully support the importance of the mass-ratio hypothesis.

2020 ◽  
Author(s):  
Genzhu Wang ◽  
Yuguo Liu ◽  
Xiuqin Wu ◽  
Danbo Pang ◽  
Xiao Yang ◽  
...  

Abstract Background: Tropical old-growth forest ecosystems are essential for global carbon regulation. Even there are mounting evidences for the significance of species and functional composition, stand structure and elevation gradients on aboveground carbon storage, the relative strengths of these drivers and whether elevation effects via biotic factors are not clear. Furthermore, the mechanisms (the mass-ratio hypothesis or niche complementarity hypothesis) are still poorly understood. Methods: We analyzed aboveground carbon storage, species diversity, stand structural diversity, community-weighted mean (CWM) of functional traits and functional diversity (FDvar) using date from 56 old-growth forest communities with different elevation gradients in Dawei mountain of southwestern China. Multiple regression models were used to test the relative importance of the predictor variables and structural equation model was used to explore the direct and indirect influences on the aboveground carbon storage. Results: Our optimal multiple regression model show aboveground carbon storage is mostly affected by diameter at breast height (DBH) diversity, followed by FDvar of dry matter concentration in mature leaves and CWM nitrogen concentration in young leaves. The final structural equation model indicates elevation indirectly affected aboveground carbon storage via DBH diversity. The stand structural diversity, but not species diversity or functional diversity, enhanced aboveground carbon storage. Conclusions: Our results indicate mass-ratio and niche complementarity effect promote aboveground carbon storage simultaneously. The complex stand structure and species with leaf nitrogen conservative strategy were the crucial drivers of aboveground carbon storage in tropical old-growth forests.


2020 ◽  
Author(s):  
Genzhu Wang ◽  
Yuguo Liu ◽  
Xiuqin Wu ◽  
Danbo Pang ◽  
Xiao Yang ◽  
...  

Abstract Background: Tropical old-growth forest ecosystems are essential for global carbon regulation. Even there are mounting evidences for the significance of species and functional composition, stand structure and elevation gradients on aboveground carbon storage, the relative strengths of these drivers and whether elevation effects via biotic factors are not clear. Furthermore, the mechanisms (the mass-ratio hypothesis or niche complementarity hypothesis) are still poorly understood.Methods: We analyzed aboveground carbon storage, species diversity, stand structural diversity, community-weighted mean (CWM) of functional traits and functional diversity (FDvar) using date from 56 old-growth forest communities with different elevation gradients in Dawei mountain of southwestern China. Multiple regression models were used to test the relative importance of the predictor variables and structural equation model was used to explore the direct and indirect influences on the aboveground carbon storage.Results: Our optimal multiple regression model show aboveground carbon storage is mostly affected by diameter at breast height (DBH) diversity, followed by FDvar of dry matter concentration in mature leaves and CWM nitrogen concentration in young leaves. The final structural equation model indicates elevation indirectly affected aboveground carbon storage via DBH diversity. The stand structural diversity, but not species diversity or functional diversity, enhanced aboveground carbon storage.Conclusions: Our results indicate mass-ratio and niche complementarity effect promote aboveground carbon storage simultaneously. The complex stand structure and species with leaf nitrogen conservative strategy were the crucial drivers of aboveground carbon storage in tropical old-growth forests.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1669
Author(s):  
Md Mizanur Rahman ◽  
Gauranga Kumar Kundu ◽  
Md Enamul Kabir ◽  
Heera Ahmed ◽  
Ming Xu

Exploration of the biodiversity–environmental factors–carbon storage relationships have been a central research question in the changing global climate over the last few decades. However, in comparison to other forest ecosystems, very few studies have been conducted in homegarden agroforestry plantations, which have a tremendous capacity to battle global climate change sustainably. We hypothesized that (i) soil organic matter content has both a direct and indirect effect on aboveground carbon storage through species richness, structural diversity, functional diversity (FD) and functional composition (FC); (ii) some facets of diversity (structural diversity, FD and FC) would be more important in linking species richness to aboveground carbon; (iii) species richness, FC, structural diversity and FD would have a positive impact on aboveground carbon storage (AGC) after considering the effect of soil fertility; and (iv) FC would have a greater effect on AGC than the other three components of biodiversity. These hypotheses were tested using structural equation modeling with field data obtained from 40 homesteads in southwestern Bangladesh. We observed that species richness, FC of maximum canopy height and structural diversity had significant effects on AGC, while soil organic matter and FD of wood density had an insignificant effect. Among the four biodiversity components, the structural diversity had a greater influence on AGC. Contrary to our hypothesis, soil fertility and species richness did not have a significant indirect effect on AGC through their mediators. These four components of biodiversity, along with soil organic matter together explained 49% of the variance in AGC. Our findings indicate that both niche complementarity and selection effects regulate AGC in homegardens, where the former theory had stronger control of AGC in homegardens. Therefore, we need to maintain not only the species diversity but also structural diversity (DBH) and functional composition (canopy height) for enhancing aboveground carbon storage on a sustainable basis in homegardens and other restoration programs under nature-based solution.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mengistu Teshome Wondimu ◽  
Zebene Asfaw Nigussie ◽  
Muktar Mohammed Yusuf

Abstract Background Regarding the most important ecological challenges, scientists are increasingly debating the relationship between biodiversity and ecosystem function. Despite this, several experimental and theoretical researches have shown inconsistencies in biodiversity and ecosystem function relationships, supporting either the niche complementarity or selection effect hypothesis. The relationship between species diversity, functional diversity, and aboveground biomass carbon was investigated in this study employing standing aboveground carbon (AGC) stock as a proxy measure for ecosystem function. We hypothesized that (i) effects of diversity on AGC can be transmitted through functional diversity and functional dominance; (ii) effects of diversity on AGC would be greater for functional dominance than functional diversity; and (iii) effects of functional diversity and functional dominance on carbon stock varied with metrics and functional traits. Community-weighted means (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multi-trait functional diversity (selection effects) indices were computed. We tested the first hypothesis using structural equation modeling. For the second hypothesis, the effects of environmental variables such as slope, aspect, and elevation were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and the two together. Results Results revealed that slope had a significant effect on aboveground carbon storage. Functional diversity and functional dominance were significant predictors of the aboveground carbon storage (22.4%) in the dry evergreen Afromontane forest. The effects of species richness on aboveground carbon storage were mediated by functional diversity and functional dominance of species. This shows that both the selection effects and the niche complementarity are important for aboveground carbon storage prediction. However, the functional diversity effects (niche complementarity) were greater than functional dominance effects (selection effects). Conclusions Linking diversity and biodiversity components to aboveground carbon provides better insights into the mechanisms that explain variation in aboveground carbon storage in natural forests, which may help improve the prediction of ecosystem functions.


New Forests ◽  
2008 ◽  
Vol 37 (3) ◽  
pp. 227-240 ◽  
Author(s):  
Sebastian Derwisch ◽  
Luitgard Schwendenmann ◽  
Roland Olschewski ◽  
Dirk Hölscher

2020 ◽  
Vol 50 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Maxence Martin ◽  
Nicole J. Fenton ◽  
Hubert Morin

The erosion of old-growth forests in boreal managed landscapes is a major issue currently faced by forest managers; however, resolving this problem requires accurate surveys. The intention of our study was to determine if historic operational aerial forest surveys accurately identified boreal old-growth forests in Quebec, Canada. We first compared stand successional stages (even-aged vs. old-growth) in two aerial surveys performed in 1968 (preindustrial aerial survey) and 2007 (modern aerial survey) on the same 2200 km2 territory. Second, we evaluated the accuracy of the modern aerial survey by comparing its results with those of 74 field plots sampled in the study territory between 2014 and 2016. The two aerial surveys differed significantly; 80.8% of the undisturbed stands that were identified as “old-growth” in the preindustrial survey were classified as “even-aged” in the modern survey, and 60% of the stands identified as “old-growth” by field sampling were also erroneously identified as “even-aged” by the modern aerial survey. The scarcity of obvious old-growth attributes in boreal old-growth forests, as well as poorly adapted modern aerial survey criteria (i.e., criteria requiring high vertical stratification and significant changes in tree species composition along forest succession), were the main factors explaining these errors. It is therefore likely that most of Quebec’s boreal old-growth forests are currently not recognized as such in forest inventories, challenging the efficacy of sustainable forest management policies.


2017 ◽  
Vol 22 (2) ◽  
Author(s):  
N. Galia Selaya ◽  
Pieter A. Zuidema ◽  
Christopher Baraloto ◽  
Vincent A. Vos ◽  
Roel J. W. Brienen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document