scholarly journals Growth and Physiological Responses of Norway Spruce (Picea abies (L.) H. Karst) Supplemented with Monochromatic Red, Blue and Far-Red Light

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 164
Author(s):  
Fangqun OuYang ◽  
Yang Ou ◽  
Tianqin Zhu ◽  
Jianwei Ma ◽  
Sanping An ◽  
...  

Monochromatic red light (R) supplementation is more efficient than blue light (B) in promoting Norway spruce (Picea abies (L.) H. Karst) growth. Transcriptome analysis has revealed that R and B may regulate stem growth by regulating phytohormones and secondary metabolites; however, the effects of light qualities on physiological responses and related gene expression in Norway spruce require further study. In the present study, three-year-old Norway spruce seedlings received sunlight during the daytime were exposed to monochromatic B (460 mm), monochromatic R (660 nm), monochromatic far-red light (FR, 730 nm), and a combination of three monochromatic lights (control, R:FR:B = 7:1:1) using light-emitting diode (LED) lamps for 12 h after sunset for 90 day. Growth traits, physiological responses, and related gene expression were determined. The results showed that light quality significantly affected Norway spruce growth. The stem height, root collar diameter, and current-year shoot length of seedlings treated with R were 2%, 10% and 12% higher, respectively, than those of the control, whereas seedlings treated with B and FR showed significantly lower values of these parameters compared with that of the control. The net photosynthetic rate (Pn) of seedlings under R treatment was 10% higher than that of the control, whereas the Pn values of seedlings treated with FR and B were 22% and 33%, respectively, lower than that of the control. The ratio of phosphoenolpyruvate carboxylase to ribulose-1,5-bisphosphate carboxylase/oxygenase (PEPC/Rubisco) of seedlings after the R treatment (0.581) was the highest and 3.98 times higher than that of the seedlings treated with B. Light quality significantly affected the gibberellic acid (GAs) levels, which was 13% higher in seedlings treated with R (6.4 g/100 ng) than that of the control, whereas, the GAs level of seedlings treated with B and FR was 17% and 19% lower, respectively, than that of the control. In addition, seedlings treated with R achieved the lowest ratio of leaf chlorophyll content to fresh weight (8.7). Compared to the R and control treatments, seedlings received FR treatment had consistently lower values of the quantum yield of electron transport beyond QA− (primary quinone, ϕEo) and efficiency, with which a trapped exciton moves an electron into the electron transport chain beyond QA− (ψo), while higher values of the relatively variable fluorescence at the J step and normalized relatively variable fluorescence at the K step (Wk). The values of ϕEo, ψO, VJ and Wk in seedlings treated with B were similar to those in the control group. The expression of genes associated with light signal transduction, such as PHYTOCHROME C (PHYC), ELONGATED HYPOCOTYL5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC 1-2 (COP1-2), and PHYTOCHROMEINTERACTING FACTOR 3 (PIF3), was significantly higher in seedlings under B treatment than those under other light treatments. Nevertheless, significant differences were not observed in the expression of COP1-2, HY5, and PIF3 between the R treatment and the control. The expression value of COP1-2 was significantly lower in R than FR light treatments. In conclusion, compared with the control, R promotes, whereas B and FR inhibit Norway spruce growth, which was accompanied by physiological changes and genes expression regulation that may be relate to a changing phytochrome photostationary state (PSS) with the supplemental R in seedlings.

Genetics ◽  
2012 ◽  
Vol 191 (3) ◽  
pp. 865-881 ◽  
Author(s):  
Jun Chen ◽  
Thomas Källman ◽  
Xiaofei Ma ◽  
Niclas Gyllenstrand ◽  
Giusi Zaina ◽  
...  

2012 ◽  
Vol 77 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Nadeem Yaqoob ◽  
Igor A. Yakovlev ◽  
Paal Krokene ◽  
Harald Kvaalen ◽  
Halvor Solheim ◽  
...  

2000 ◽  
Vol 66 (6) ◽  
pp. 2349-2357 ◽  
Author(s):  
Michael Wyman ◽  
John T. Davies ◽  
David W. Crawford ◽  
Duncan A. Purdie

ABSTRACT Generic taxon-specific DNA probes that target an internal region of the gene (rbcL) encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) were developed for two groups of marine phytoplankton (diatoms and prymnesiophytes). The specificity and utility of the probes were evaluated in the laboratory and also during a 1-month mesocosm experiment in which we investigated the temporal variability in RubisCO gene expression and primary production in response to inorganic nutrient enrichment. We found that the onset of successive bloom events dominated by each of the two classes of chromophyte algae was associated with marked taxon-specific increases in rbcLtranscription rates. These observations suggest that measurements of RubisCO gene expression can provide an early indicator of the development of phytoplankton blooms and may also be useful in predicting which taxa are likely to dominate a bloom.


2009 ◽  
Vol 30 (2) ◽  
pp. 205-213 ◽  
Author(s):  
L. Ditmarova ◽  
D. Kurjak ◽  
S. Palmroth ◽  
J. Kmet ◽  
K. Strelcova

2010 ◽  
Vol 41 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoling Zhang ◽  
Paola Sebastiani ◽  
Gang Liu ◽  
Frank Schembri ◽  
Xiaohui Zhang ◽  
...  

Previous studies have shown that physiological responses to cigarette smoke can be detected via bronchial airway epithelium gene expression profiling and that heterogeneity in this gene expression response to smoking is associated with lung cancer. In this study, we sought to determine the similarity of the effects of tobacco smoke throughout the respiratory tract by determining patterns of smoking-related gene expression in paired nasal and bronchial epithelial brushings collected from 14 healthy nonsmokers and 13 healthy current smokers. Using whole genome expression arrays, we identified 119 genes whose expression was affected by smoking similarly in both bronchial and nasal epithelium, including genes related to detoxification, oxidative stress, and wound healing. While the vast majority of smoking-related gene expression changes occur in both bronchial and nasal epithelium, we also identified 27 genes whose expression was affected by smoking more dramatically in bronchial epithelium than nasal epithelium. Both common and site-specific smoking-related gene expression profiles were validated using independent microarray datasets. Differential expression of select genes was also confirmed by RT-PCR. That smoking induces largely similar gene expression changes in both nasal and bronchial epithelium suggests that the consequences of cigarette smoke exposure can be measured in tissues throughout the respiratory tract. Our findings suggest that nasal epithelial gene expression may serve as a relatively noninvasive surrogate to measure physiological responses to cigarette smoke and/or other inhaled exposures in large-scale epidemiological studies.


Sign in / Sign up

Export Citation Format

Share Document