scholarly journals Soil Bacterial and Fungal Richness and Network Exhibit Different Responses to Long-Term Throughfall Reduction in a Warm-Temperate Oak Forest

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 165
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Prolonged drought results in serious ecological consequences in forest ecosystems, particularly for soil microbial communities. However, much is unknown about soil microbial communities in their response to long-term consecutive droughts in warm-temperate forests. Here, we conducted a 7-year manipulated throughfall reduction experiment (TFR) to examine the responses of bacterial and fungal communities in terms of richness and networks. Our results show that long-term TFR reduced bacterial, but not fungal, richness, with rare bacterial taxa being more sensitive to TFR than dominant taxa. The bacterial network under the TFR treatment featured a simpler network structure and fewer competitive links compared to the control, implying weakened interactions among bacterial species. Bacterial genes involved in xenobiotic biodegradation and metabolism, and lignin-degrading enzymes were enhanced under TFR treatment, which may be attributed to TFR-induced increases in fine root biomass and turnover. Our results indicate that soil bacterial communities are more responsive than fungi to long-term TFR in a warm-temperate oak forest, leading to potential consequences such as the degradation of recalcitrant organics in soil.

Ecosystems ◽  
2021 ◽  
Author(s):  
Fiona M. Seaton ◽  
Sabine Reinsch ◽  
Tim Goodall ◽  
Nicola White ◽  
Davey L. Jones ◽  
...  

AbstractThe response of soil microbial communities to a changing climate will impact global biogeochemical cycles, potentially leading to positive and negative feedbacks. However, our understanding of how soil microbial communities respond to climate change and the implications of these changes for future soil function is limited. Here, we assess the response of soil bacterial and fungal communities to long-term experimental climate change in a heathland organo-mineral soil. We analysed microbial communities using Illumina sequencing of the 16S rRNA gene and ITS2 region at two depths, from plots undergoing 4 and 18 years of in situ summer drought or warming. We also assessed the colonisation of Calluna vulgaris roots by ericoid and dark septate endophytic (DSE) fungi using microscopy after 16 years of climate treatment. We found significant changes in both the bacterial and fungal communities in response to drought and warming, likely mediated by changes in soil pH and electrical conductivity. Changes in the microbial communities were more pronounced after a longer period of climate manipulation. Additionally, the subsoil communities of the long-term warmed plots became similar to the topsoil. Ericoid mycorrhizal colonisation decreased with depth while DSEs increased; however, these trends with depth were removed by warming. We largely ascribe the observed changes in microbial communities to shifts in plant cover and subsequent feedback on soil physicochemical properties, especially pH. Our results demonstrate the importance of considering changes in soil microbial responses to climate change across different soil depths and after extended periods of time.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Abstract Background There are many studies on disentangling the responses of autotrophic (AR) and heterotrophic (HR) respiration components of soil respiration (SR) to long-term drought, but few studies have focused on the mechanisms underlying its responses. Methods To explore the impact of prolonged drought on AR and HR, we conducted the 2-year measurements on soil CO2 effluxes in the 7th and 8th year of manipulated throughfall reduction (TFR) in a warm-temperate oak forest. Results Our results showed long-term TFR decreased HR, which was positively related to bacterial richness. More importantly, some bacterial taxa such as Novosphingobium and norank Acidimicrobiia, and fungal Leptobacillium were identified as major drivers of HR. In contrast, long-term TFR increased AR due to the increased fine root biomass and production. The increased AR accompanied by decreased HR appeared to counteract each other, and subsequently resulted in the unchanged SR under the TFR. Conclusions Our study shows that HR and AR respond in the opposite directions to long-term TFR. Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR. This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO2 effluxes under future droughts.


2021 ◽  
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Abstract Background: There are many studies on disentangling the responses of autotrophic (AR) and heterotrophic (HR) respiration components of soil respiration (SR) to long-term drought, but few studies have focused on the mechanisms underlying its responses.Methods: To explore the impact of prolonged drought on AR and HR, We conducted the 2-year measurements on soil CO2 effluxes in the 7th and 8th year of manipulated throughfall reduction (TFR) in a warm-temperate oak forest. Results: Our results showed long-term TFR decreased HR, which was positively related to bacterial richness. More importantly, some bacterial taxa such as Novosphingobium and norank Acidimicrobiia, and fungal Leptobacillium were identified as major drivers of HR. In contrast, long-term TFR increased AR due to the increased fine root biomass and production. The increased AR accompanied by decreased HR appeared to counteract each other, and subsequently resulted in the unchanged SR under the TFR. Conclusions: Our study shows that HR and AR respond in the opposite directions to long-term TFR. Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR. This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO2 effluxes under future droughts.


2021 ◽  
Author(s):  
Alin Song ◽  
Zimin Li ◽  
Fenliang Fan

<p>Returning crop straw into soil is an important practice to balance biogenic and bioavailable silicon (Si) pool in paddy, which is crucial for rice healthy growth. However, it remains elusive how straw return affects Si bioavailability, its uptake, and rice yield, owing to little knowledge about soil microbial communities responsible for straw degradation. Here, we investigated the change of soil Si fractions and microbial community in a 39-year-old paddy field amended by a long-term straw return. Results showed that rice straw-return significantly increased soil bioavailable Si and rice yield to from 29.9% to 61.6% and from 14.5% to 23.6%, respectively, compared to NPK fertilization alone. Straw return significantly altered soil microbial community abundance. Acidobacteria was positively and significantly related to amorphous Si, while Rokubacteria at the phylum level, Deltaproteobacteria and Holophagae at the class level were negatively and significantly related to organic matter adsorbed and Fe/Mn-oxide combined Si in soils. Redundancy analysis of their correlations further demonstrated that Si status significantly explained 12% of soil bacterial community variation. These findings suggest that soil bacteria community and diversity interact with Si mobility via altering its transformation, resulting in the balance of various nutrient sources to drive biological silicon cycle in agroecosystem.</p>


2020 ◽  
Vol 8 (11) ◽  
pp. 1828 ◽  
Author(s):  
Zongwei Xia ◽  
Jingyi Yang ◽  
Changpeng Sang ◽  
Xu Wang ◽  
Lifei Sun ◽  
...  

Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3− contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.


Agronomy ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Sadikshya Dangi ◽  
Rebecca Tirado-Corbalá ◽  
James Gerik ◽  
Bradley Hanson

2020 ◽  
Vol 38 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Monika Gorzelak ◽  
Breanne M. McAmmond ◽  
Jonathan D. Van Hamme ◽  
Christina Birnbaum ◽  
Corrina Thomsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document