scholarly journals Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 390
Author(s):  
Paweł Wiśniewski ◽  
Michael Märker

Soil erosion is one of the major processes degrading the natural environment but also agricultural production areas. Soil erosion may lead to soil organic carbon (SOC) loss, especially from sloping agricultural terrain units. The use of phytomelioration in environmental management, particularly long-term, permanent forest vegetation, is widely recognized as a possible measure for soil erosion protection and mitigation of climate change through carbon sequestration. The aim of this study was to compare of the topsoil organic carbon stocks on the slopes under soil-protecting forests in relation to the adjacent agricultural slopes. The research was conducted in the young glacial landscape of North-Central Poland. The study indicated the significant role of forest management on the increase of soil organic matter content and SOC stock. The results show that land use and slope gradients are important factors controlling soil organic carbon pools in topsoil in young glacial areas. This topic is extremely important particularly as the effects of climate change become more and more visible, and society faces new challenges in preventing these changes.

2021 ◽  
Author(s):  
Elisa Bruni ◽  
Bertrand Guenet ◽  
Yuanyuan Huang ◽  
Hugues Clivot ◽  
Iñigo Virto ◽  
...  

Abstract. The 4 per 1000 initiative aims to promote better agricultural practices to maintain and increase soil organic carbon stocks for soil fertility, food security and climate change adaptation and mitigation. The most straightforward way to enhance soil organic carbon stocks is to increase carbon inputs to the soil. In this study, we assessed the amount of organic carbon inputs that are necessary to reach a target of soil organic carbon stocks increase by 4 ‰ per year on average, for 30 years. We used the Century model to simulate soil organic carbon stocks in 14 European long-term agricultural experiments and assessed the required level of carbon inputs increase to reach the 4 per 1000 target. Initial simulated stocks were computed analytically assuming steady state. We compared modelled carbon inputs to different treatments of additional carbon used on the experimental sites (exogenous organic matter addition and one treatment with different crop rotations). We then analyzed how this would change under future scenarios of temperature increase. The model was calibrated to fit the control plot, i.e. conventional management without additional carbon inputs, and was able to reproduce the SOC stocks dynamics. We found that, on average among the selected experimental sites, annual carbon inputs will have to increase by 43.15 ± 5.05 %, which is 0.66 ± 0.23 MgC ha−1 per year (mean ± standard error), with respect to the control situation. The simulated amount of carbon inputs required to reach the 4 ‰ SOC increase was lower or similar to the amount of carbon inputs actually used in the majority of the additional carbon input treatments of the long-term experiments. However, Century might be overestimating the effect of additional C inputs on the variation of SOC stocks in some sites, since we found that treatments with additional carbon inputs were increasing by 0.25 % on average among the experimental sites. We showed that the modeled carbon inputs required to reach the target depended linearly on the initial SOC stocks. We estimated that annual carbon inputs would have to increase further due to temperature increase effect on decomposition rates, that is 54 % for a 1 °C warming and 120 % for a 5 °C warming.


2021 ◽  
Author(s):  
Bezaye Gorfu Tessema ◽  
Heiko Daniel ◽  
Zenebe Adimassu ◽  
Brian Wilson

Environmental degradation and climate change are key current threats to world agriculture and food security and human–induced changes have been significant driving forces of this global environmental change. An important component is land degradation which results in a diminished soil organic carbon (SOC) stock with concomitant loss of soil condition and function. Land management to improve soil organic matter content, condition and productivity is therefore a key strategy to safeguard agricultural production, food supply and environmental quality. Soil organic carbon sequestration through the use of plant species with high photosynthetic efficiency, deep roots and high biomass production is one important strategy to achieve this. Tropical pastures, which are adapted to a wide range of environmental conditions have particular potential in this regard and have been used extensively for land rehabilitation. Tropical pastures also have advantages over trees for biomass and carbon accumulation due to their rapid establishment, suitability for annual harvest, continual and rapid growth rates. In addition, tropical pastures have the potential for SOC storage in subsoil horizons due to their deep root systems and can be used as biomass energy crops, which could further promote their use as a climate change mitigation option. Here we aimed to review current knowledge regarding the SOC storage potential of tropical grasses worldwide and identified knowledge gaps and current research needs for the use of tropical grasses in agricultural production system.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


2017 ◽  
Vol 63 (12) ◽  
pp. 1661-1675 ◽  
Author(s):  
P. C. Moharana ◽  
R. K. Naitam ◽  
T. P. Verma ◽  
R. L. Meena ◽  
Sunil Kumar ◽  
...  

1989 ◽  
Vol 69 (1) ◽  
pp. 39-47 ◽  
Author(s):  
A. NDAYEGAMIYE ◽  
D. CÔTÉ

Chemical and biological properties were evaluated in 1987 on an acidic silty loam soil following a long-term field study established in 1978 and cultivated with silage corn. Treatments included a control, solid cattle manure (20, 40 and 60 Mg ha−1 FYM) and pig slurry (60, 120 m3 ha−1 SLU) applied every 2 yr and annually, respectively. No fertilizer was applied. The results of this study have shown that neither treatment significantly affected soil pH values, total-N contents and C:N ratios compared to the control. The cation exchange capacity (CEC) of the soil was significantly higher with FYM treatment than with control or SLU application. The highest rates of FYM and SLU have also increased (P < 0.05) soil organic carbon, microbial activity and potentially mineralizable nitrogen. The soil microflora populations (bacteria, fungi, actinomycetes, ammonifiers and nitrifiers) were greatly improved by both treatments. There were no significant differences in organic matter content or the relative amount of humic and fulvic acids between FYM and SLU plots. In spite of these results, FYM application (40 and 60 Mg ha−1) did affect more significantly the distribution of organic carbon in HA and the E4/E6 quotients than SLU additions. Humic acids extracted from SLU amended soils had a lower C content and lower E4/E6 ratios than humic acids from FYM soils. Long-term SLU application did not contribute to decreased organic matter content, CEC and humic acids yield, probably because of optimal organic residues returned to the soil by the corn crops. The FYM application generally improved soil chemical and biological properties. For a sustainable soil productivity, long-term SLU application should then be avoided in rotation in which small amounts of plant residues are returned, especially on soils with low organic matter contents. Key words: Organic matter, microbial activity, nitrogen mineralization potential, CEC, solid cattle manure, pig slurry


Sign in / Sign up

Export Citation Format

Share Document