scholarly journals Peculiarities of Infiltration Measurements in Water-Repellent Forest Soil

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 472
Author(s):  
Tomáš Orfánus ◽  
Anton Zvala ◽  
Malvína Čierniková ◽  
Dagmar Stojkovová ◽  
Viliam Nagy ◽  
...  

The paper deals with measurements of water infiltration carried out on a well-developed forest floor formed by needle-leaf litter of Norway spruce. Three field methods (tension disk permeameter, single-ring infiltrometer and Guelph permeameter) were used to determine the soil hydraulic conductivity. The results were strongly influenced by the water repellency at the interface between the O- and A-horizons. This interface was severely water repellent during the hot and dry summer season, regardless of the generally humid mountain climate of the High Tatras foothill. The single-ring method paradoxically provided lower hydraulic conductivity (3.2 × 10−4 ± 1.3 × 10−4) compared to the tension disk permeameter (8.5 × 10−4 ± 3.3 × 10−4) due to the presence of the water-repellent O/A-interface. This effect was also observed with the Guelph permeameter method, which gave the lowest value (5.6 × 10−5 ± 4.3 × 10−5). Abrupt retardation of infiltration on the water-repellent interface may generate shallow subsurface runoff (as was proved by the irrigation experiment) or litter splash during extreme rainfall events and promote water flow to deeper soil horizons through preferential pathways. The observed effects of the forest floor on rainfall infiltration will depend on the seasonal variability of soil water repellency. Although the forest floor is a source of hydrophobic substances that cause water repellency at the O/A-interface and can trigger runoff generation, at the same time its cohesive duff layer protects the forest soil from erosion.

Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
L’ubomír Lichner ◽  
Paul Hallett ◽  
Debbie Feeney ◽  
Olívia Ďugová ◽  
Miloslav Šír ◽  
...  

AbstractNumerous recent laboratory studies have shown that vegetation can influence soil water flow by inducing very low levels of water repellency. In this study we extended on this previous research by developing a field-based test using a miniature infiltrometer to assess low levels of water repellency from physically based measurements of liquid flow in soil. The field-based test was verified through a simple laboratory experiment and then applied to determine the impact of vegetation and antecedent soil water content. The soil hydraulic properties determined were hydraulic conductivity, sorptivity, as well as the persistence and index of water repellency. Tests were conducted following a dry spell and wet spell on (1) forest soil (0 cm depth), (2) glade soil (0 cm depth) and (3) glade soil (50 cm depth). It was found that both the persistence and index of water repellency, R, decreased in the order as follows: forest soil > glade soil (0 cm) > glade soil (50 cm) for both dry and wet spell. The range of values of R was 0.28 (wettable) to 360 (highly water repellent), which affected hydraulic conductivity k r(−2 cm). R increased and hence k r(−2 cm) decreased in the order: forest soil < glade soil (0 cm) < glade soil (50 cm) for both the dry and wet spell. There were clear interactions between vegetation and changes to water flow caused by presence of repellency.


Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Ľubomír Lichner ◽  
Jozef Capuliak ◽  
Natalia Zhukova ◽  
Ladislav Holko ◽  
Henryk Czachor ◽  
...  

AbstractPines, used for sand dune stabilization, can influence the hydrophysical parameters and water flow in an aeolian sandy soil considerably, mainly due to soil water repellency. Two sites, separated by distance of about 20 m, formed the basis of our study. A control soil (“Pure sand“) with limited impact of vegetation or organic matter was formed at 50 cm depth beneath a forest glade area. This was compared to a “Forest soil” in a 30-year old Scots pine (Pinus sylvestris) forest. Most of the hydrophysical parameters were substantially different between the two soil surfaces. The forest soil was substantially more water repellent and had two-times the degree of preferential flow compared to pure sand. Water and ethanol sorptivities, hydraulic conductivity, and saturated hydraulic conductivity were 1%, 84%, 2% and 26% those of the pure sand, respectively. The change in soil hydrophysical parameters due to soil water repellency resulted in preferential flow in the forest soil, emerging during a simulated heavy rain following a long hot, dry period. The wetting front established in pure sand exhibited a form typical of that for stable flow. Such a shape of the wetting front can be expected in the forest soil in spring, when soil water repellency is alleviated substantially.


2018 ◽  
pp. 343-351
Author(s):  
Tomáš Orfánus ◽  
Viliam Nagy

Physical properties of top-soil organic materials significantly influence initiation processes of infiltration and runoff generation. This paper deals with the specifics of water infiltration through the top surface organic layer of the forest soil. Three field methods (Guelph permeameter, Tension disk permeameter, Single-ring method) and one laboratory method (Falling head) of hydraulic conductivity (KS) determination are compared and interpreted in the context of their applicability and limitations. The Falling head method provides far different values of KS if sample cylinders are or are not sealed with grease against the wall effect. The Guelf permeameter is very significant to the position of different horizons’ interface, while Tension disc permeameter results are dependent on antecedent soil moisture. The single ring method is applicable with acceptable results only when there is no abrupt interface between horizons in the vicinity of the ring bottom edge.


2008 ◽  
Vol 16 (3) ◽  
pp. 267 ◽  
Author(s):  
K. RASA ◽  
R. HORN ◽  
M. RÄTY

Water repellency (WR) delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95) at the time of sampling. WR increased as follows: sand (R = 1.8-5.0) < clay (R = 2.4-10.3) < organic (R = 7.9-undefined). At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr.), where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;


Soil Research ◽  
2005 ◽  
Vol 43 (7) ◽  
pp. 803 ◽  
Author(s):  
Margaret M. Roper

Water repellency can significantly reduce crop and pasture establishment and production in sandy soils. Management practices that increase the rate of water infiltration into dry soils following the first rains at the end of the dry season were investigated. In the laboratory, addition of water to water repellent soil and maintenance of warm moist conditions produced a gradual decline in water repellency. This was supported by results in the field which showed that under daily irrigation there was a gradual decline in water repellency over time. However, under dryland conditions, other mechanisms to increase water infiltration had to be found. In the laboratory, after the addition of lime and kaolinite clay, there was an initial rapid decline in repellency, indicative of a physical mechanism, followed by a more gradual decline suggesting a biological response. In the field, under dryland conditions, the addition of lime and kaolinite clay resulted in a reduction in water repellency, and in the case of lime, this effect increased with the size of application. Estimates of the numbers of wax-degrading bacteria in the treated soils, using a most-probable-number assay, showed at least a 10-fold increase in lime-treated sands, but not in the clay-treated sands. The results suggest that lime may provide a viable alternative for increasing the wettability of soils by physical mechanisms and by promoting microbial activity by bacteria responsible for wax degradation, resulting in more consistent plant germination and establishment, and increased crop yields.


2020 ◽  
Vol 10 (6) ◽  
pp. 1950 ◽  
Author(s):  
Sergio Esteban Lozano-Baez ◽  
Miguel Cooper ◽  
Silvio Frosini de Barros Ferraz ◽  
Ricardo Ribeiro Rodrigues ◽  
Laurent Lassabatere ◽  
...  

This study presents the results of the soil hydraulic characterization performed under three land covers, namely pasture, 9-year-old restored forest, and remnant forest, in the Brazilian Atlantic Forest. Two types of infiltration tests were performed, namely tension (Mini-Disk Infiltrometer, MDI) and ponding (Beerkan) tests. MDI and Beerkan tests provided complementary information, highlighting a clear increase of the hydraulic conductivity, especially at the remnant forest plots, when moving from near-saturated to saturated conditions. In addition, measuring the unsaturated soil hydraulic conductivity with different water pressure heads allowed the estimation of the macroscopic capillary length in the field. This approach, in conjunction with Beerkan measurements, allowed the design better estimates of the saturated soil hydraulic conductivity under challenging field conditions, such as soil water repellency (SWR). This research also reports, for the first time, evidence of SWR in the Atlantic Forest, which affected the early stage of the infiltration process with more frequency in the remnant forest.


Biologia ◽  
2015 ◽  
Vol 70 (11) ◽  
Author(s):  
Philip R. Ward ◽  
Margaret M. Roper ◽  
Ramona Jongepier ◽  
Shayne F. Micin

AbstractWater repellence is a condition in which soils become hydrophobic and do not readily absorb water. The condition causes problems in agricultural production relating to water availability for seed germination and plant growth. In this research we assess the impact of disturbing the soil by a single annual soil tillage (compared with no-till) and crop residue retention (compared with residue removal by burning) on the severity of water repellency, and on water infiltration during and immediately after rainfall, for 5 discrete rainfall events over an 18-month period covering two crop growing seasons. Soil tillage and crop residue removal were associated with decreased severity of water repellency. Despite this, soil tillage resulted in less infiltration of rain water, especially in the crop inter-row spaces, one hour after the commencement of rainfall, and 6 hours after the conclusion of rainfall. Where a single soil tillage was performed, soil in the inter-row spaces absorbed 19-30% of incident rainfall, compared with 58-78% in undisturbed soils. This was observed for a rainfall event 11 months after soil tillage, indicating that soil tillage has a long-lasting impact on pathways of water entry into the soil.


2020 ◽  
Author(s):  
Sergio Esteban Lozano-Baez ◽  
Miguel Cooper ◽  
Silvio Frosini de Barros Ferraz ◽  
Ricardo Ribeiro Rodrigues ◽  
Mirko Castellini ◽  
...  

&lt;p&gt;This study presents the results of the soil hydraulic characterization performed under three land covers, namely pasture, 9-year-old restored forest, and remnant forest, in the Brazilian Atlantic Forest. Two types of infiltration tests were performed, namely tension (Mini-Disk Infiltrometer, MDI) and ponding (Beerkan) tests. MDI and Beerkan tests provided a complementary information, highlighting a clear increase of the hydraulic conductivity, especially at the remnant forest plots, when moving from near-saturated to saturated conditions. In addition, measuring the unsaturated soil hydraulic conductivity with different water pressure heads also allowed to estimate the macroscopic capillary length in the field. This approach, in conjunction with Beerkan measurements, allowed to generate better estimates of the saturated soil hydraulic conductivity under challenging field conditions, such as soil water repellency (SWR). This research also reports for the first time evidence of SWR in the Atlantic Forest, which affected the early stage of the infiltration process with more frequency in the remnant forest.&lt;/p&gt;


2008 ◽  
Vol 2 (No. 2) ◽  
pp. 59-66 ◽  
Author(s):  
L. Lichner ◽  
T. Orfánus ◽  
K. Novákova ◽  
M. Šír ◽  
M. Tesař

The objective of this study was to assess the impact of vegetation on the hydraulic conductivity of sandy soil at the locality Ml&aacute;ky II at Sekule (southwest Slovakia). The measurements were taken on the surface of a meadow (Meadow site), a 30-year old Scots pine (Pinus sylvestris) forest (Forest site) and a glade (Glade site). In the glade, the measurements were also taken in the depth of 50 cm (Pure sand) to reduce the influence of vegetation on the soil properties. It was found that the unsaturated hydraulic conductivity k<sub>r</sub>(&minus;2 cm) as reduced due to the soil water repellency increased in the same order: Forest soil &lt; Glade soil &asymp; Meadow soil &lt; Pure sand, similarly as decreased the water drop penetration time t<sub>p</sub>: Forest soil &gt; Glade soil &asymp; Meadow soil &gt; Pure sand, which could refer to an inverse proportionality between the capillary suction and hydrophobic coating of the soil particles. The saturated hydraulic conductivity K<sub>s</sub> increased in the following order: Meadow soil &lt; Glade soil &asymp; Forest soil &lt; Pure sand; more than two-times higher K<sub>s</sub> at both the Forest and Glade sites than that at the Meadow site could be the result of both the patchy growth of vegetation with some areas of bare soil at the Glade site and the macropores (dead roots) in more homogeneous humic top-layer at the Forest site. The share B<sub>r</sub> of flux through the pores with radii r longer than approximately 0.5 mm decreased in the order: Forest soil &raquo; Meadow soil &gt; Glade soil &raquo; Pure sand, revealing the prevalence of preferential flow through macropores (dead roots) in the Forest site and a negligible share of macropores in the Pure sand.


Sign in / Sign up

Export Citation Format

Share Document