scholarly journals Water infiltration into the soil – what do measurements indicate?

2018 ◽  
pp. 343-351
Author(s):  
Tomáš Orfánus ◽  
Viliam Nagy

Physical properties of top-soil organic materials significantly influence initiation processes of infiltration and runoff generation. This paper deals with the specifics of water infiltration through the top surface organic layer of the forest soil. Three field methods (Guelph permeameter, Tension disk permeameter, Single-ring method) and one laboratory method (Falling head) of hydraulic conductivity (KS) determination are compared and interpreted in the context of their applicability and limitations. The Falling head method provides far different values of KS if sample cylinders are or are not sealed with grease against the wall effect. The Guelf permeameter is very significant to the position of different horizons’ interface, while Tension disc permeameter results are dependent on antecedent soil moisture. The single ring method is applicable with acceptable results only when there is no abrupt interface between horizons in the vicinity of the ring bottom edge.

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 472
Author(s):  
Tomáš Orfánus ◽  
Anton Zvala ◽  
Malvína Čierniková ◽  
Dagmar Stojkovová ◽  
Viliam Nagy ◽  
...  

The paper deals with measurements of water infiltration carried out on a well-developed forest floor formed by needle-leaf litter of Norway spruce. Three field methods (tension disk permeameter, single-ring infiltrometer and Guelph permeameter) were used to determine the soil hydraulic conductivity. The results were strongly influenced by the water repellency at the interface between the O- and A-horizons. This interface was severely water repellent during the hot and dry summer season, regardless of the generally humid mountain climate of the High Tatras foothill. The single-ring method paradoxically provided lower hydraulic conductivity (3.2 × 10−4 ± 1.3 × 10−4) compared to the tension disk permeameter (8.5 × 10−4 ± 3.3 × 10−4) due to the presence of the water-repellent O/A-interface. This effect was also observed with the Guelph permeameter method, which gave the lowest value (5.6 × 10−5 ± 4.3 × 10−5). Abrupt retardation of infiltration on the water-repellent interface may generate shallow subsurface runoff (as was proved by the irrigation experiment) or litter splash during extreme rainfall events and promote water flow to deeper soil horizons through preferential pathways. The observed effects of the forest floor on rainfall infiltration will depend on the seasonal variability of soil water repellency. Although the forest floor is a source of hydrophobic substances that cause water repellency at the O/A-interface and can trigger runoff generation, at the same time its cohesive duff layer protects the forest soil from erosion.


2021 ◽  
Author(s):  
Bob W. Zwartendijk ◽  
H.J. (Ilja) van Meerveld ◽  
Ryan J. Teuling ◽  
Chandra P. Ghimire ◽  
L. Adrian Bruijnzeel

<p>In many tropical areas slash-and-burn agriculture is an important driver of forest loss. In areas where slash-and-burn agriculture has been practiced for decades, land cover is typically a mosaic of patches of remnant forest, fields under active cultivation, fallows in various stages of regrowth (ranging from young shrub to semi-mature), and degraded fire-climax grasslands. Although runoff generation mechanisms are expected to be different for these different patches, little quantitative information is available in this regard, particularly at the catchment scale and over longer time-scales (i.e., multiple slash-and-burn cycles).</p><p>We re-instrumented a 31 ha catchment in upland Eastern Madagascar, where slash-and-burn agriculture has been practiced for more than 70 years in 2015; it had been monitored between 1963 and 1972 as well<sup>1</sup>. We measured streamflow at two locations and overland flow and soil moisture for four hillside plots (0.05 – 1.93 ha): one plot under repeatedly coppiced and burned <em>Eucalyptus</em> and three plots under young shrub and tree fallows. One of the plots underwent rudimentary terracing in the past. We analysed the rainfall-runoff dynamics for 50 rainfall events (median 12 mm, maximum 71 mm).</p><p>For 60% of the events, the stormflow coefficient (minimum contributing area) was <3%, which is the proportion of valley-bottom wetlands and rice paddies in the catchment. Stable isotope sampling for five storm runoff events indicate a maximum total event-water contribution of 16%. However, instantaneous event-water contributions were as high as 66%. The hillside plot runoff response was dominated by saturation-excess overland flow and showed strong threshold behaviour in terms of the antecedent soil moisture storage in the upper 30 cm of the soil plus the event total rainfall amount (ASI + P). Average threshold values for overland flow occurrence ranged from 87 mm for the coppiced <em>Eucalyptus</em> to 137 mm for the young fallow plots (regardless of terrace presence). Stormflow also increased after an ASI+P-threshold was exceeded (100 mm based on the soil moisture sensors for the <em>Eucalyptus</em> plot and 150 mm for the sensors at the tree fallow plots).</p><p>These results indicate an increased hydrological connectivity between hillslopes and valley bottom under wetter conditions and that stormflow in the study catchment is strongly affected by variations in seasonal rainfall. The results will be used to validate a hydrological model to determine the net effect of concurrent changes in soil infiltrability and vegetation water use associated with forest loss and recovery on stormflow totals and the seasonal flow regime.</p><p><strong><sup>1</sup></strong>Bailly, C., de Coignac, G.B., Malvos, C., Ningre, J.M., and Sarrailh, J.M. (1974). Étude de l'influence du couvert naturel et de ses modifications á Madagascar. Expérimentations en bassins versants élémentaires. Cahiers Scientifiques, 4. Centre Scientifique Forestier Tropical, Nogent-sur-Marne, France, 114 pp.</p>


2011 ◽  
Vol 68 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Carlos Rogério de Mello ◽  
Léo Fernandes Ávila ◽  
Lloyd Darrell Norton ◽  
Antônio Marciano da Silva ◽  
José Márcio de Mello ◽  
...  

Soil water content is essential to understand the hydrological cycle. It controls the surface runoff generation, water infiltration, soil evaporation and plant transpiration. This work aims to analyze the spatial distribution of top soil water content and to characterize the spatial mean and standard deviation of top soil water content over time in an experimental catchment located in the Mantiqueira Range region, state of Minas Gerais, Brazil. Measurements of top soil water content were carried out every 15 days, between May/2007 and May/2008. Using time-domain reflectometry (TDR) equipment, 69 points were sampled in the top 0.2 m of the soil profile. Geostatistical procedures were applied in all steps of the study. First, the spatial continuity was evaluated, and the experimental semi-variogram was modeled. For the development of top soil water content maps over time a co-kriging procedure was used having the slope as a secondary variable. Rainfall regime controlled the top soil water content during the wet season. Land use was also another fundamental local factor. The spatial standard deviation had low values under dry conditions, and high values under wet conditions. Thus, more variability occurs under wet conditions.


1993 ◽  
Vol 8 (1) ◽  
pp. 15-20 ◽  
Author(s):  
S.D. Logsdon ◽  
J.K. Radke ◽  
D.L. Karlen

AbstractQuantitative data are needed to understand how alternative farming practices affect surface infiltration of water and associated surface soil properties. We used a rainfall simulator, double ring infiltrometer, small single ring infiltrometers, and tension infiltrometers to measure water infiltration for Clarion loam (fine-loamy, mixed, mesic Typic Hapludoll) and for Webster silty clay loam (fine-loamy, mixed, mesic Typic Haplaquoll) soils located on a conventionally-managed and an alternatively-managed farm in central Iowa. Steady-state measurements suggested that infiltration rates were somewhat higher for the alternative farming system. Bulk densities were sometimes lower, and volume of large pores was a little higher for the alternative farming system. Small single rings were more reproducible than rainfall simulators or double ring infiltrometers, and data trends were the same as for rainfall simulators.


Author(s):  
Simone Di Prima ◽  
Thierry Winiarski ◽  
Rafael Angulo-Jaramillo ◽  
Ryan D. Stewart ◽  
Mirko Castellini ◽  
...  

<p>Preferential flow is more the rule than the exception, in particular during water infiltration experiments. In this study, we demonstrate the potential of GPR monitoring to detect preferential flows during water infiltration. We monitored time-lapse ground penetrating radar (GPR) surveys in the vicinity of single-ring infiltration experiments and created a three-dimensional (3D) representation of infiltrated water below the devices. For that purpose, radargrams were constructed from GPR transects conducted over two grids (1 m × 1 m) before and after the infiltration tests. The obtained signal was represented in 3D and a threshold was chosen to part the domain into wetted and non-wetted zones, allowing the determination of the infiltration bulb. That methodology was used to detect the infiltration below the devices and clearly pointed at nonuniform flows in correspondence with the heterogeneous soil structures. The protocol presented in this study represents a practical and valuable tool for detecting preferential flows at the scale of a single ring infiltration experiment.</p>


2011 ◽  
Vol 15 (10) ◽  
pp. 3171-3179 ◽  
Author(s):  
Y. Zhang ◽  
H. Wei ◽  
M. A. Nearing

Abstract. This study presents unique data on the effects of antecedent soil moisture on runoff generation in a semi-arid environment, with implications for process-based modeling of runoff. The data were collected from four small watersheds measured continuously from 2002 through 2010 in an environment where evapo-transpiration approaches 100% of the infiltrated water on the hillslopes. Storm events were generally intense and of short duration, and antecedent volumetric moisture conditions were dry, with an average in the upper 5 cm soil layer over the nine year period of 8% and a standard deviation of 3%. Sensitivity analysis of the model showed an average of 0.05 mm change in runoff for each 1% change in soil moisture, indicating an approximate 0.15 mm average variation in runoff accounted for by the 3% standard deviation of measured antecedent soil moisture. This compared to a standard deviation of 4.7 mm in the runoff depths for the measured events. Thus the low variability of soil moisture in this environment accounts for a relative lack of importance of storm antecedent soil moisture for modeling the runoff. Runoff characteristics simulated with a nine year average of antecedent soil moisture were statistically identical to those simulated with measured antecedent soil moisture, indicating that long term average antecedent soil moisture could be used as a substitute for measured antecedent soil moisture for runoff modeling of these watersheds. We also found no significant correlations between measured runoff ratio and antecedent soil moisture in any of the four watersheds.


1998 ◽  
Vol 29 (4-5) ◽  
pp. 331-346 ◽  
Author(s):  
Sean K. Carey ◽  
Ming-ko Woo

Large quantities of water are discharged from subarctic basins during snowmelt season. Runoff contributing areas as well as timing and magnitude of meltwater generation from different slopes are highly variable. Two slopes in the lower Wolf Creek basin, southern Yukon, were studied in 1997. The south-facing slope has a dense aspen forest that is leafless in the melt period (April – May) and is underlain by seasonal frost. The north-facing slope has open stands of spruce and an organic layer that rests on mineral soils with permafrost. In 1997, snowmelt is advanced by over 10 days on the south slope, which receives more solar radiation than the north aspect. All meltwater on the south slope infiltrates the frozen silt without generating runoff. By the time significant melt events occur on the north slope the frost and snow are gone from the south. Meltwater is able to infiltrate the frozen organic soil but deep percolation is prevented by the ice-rich substrate. Lateral flow begins after the organic layer is saturated, with much runoff along intermittent rills fed by diffuse and pipe flows. Rills and pipes are interconnected but the drainage network and runoff contributing area change depending on the disposition of the snow as well as water and frost table positions relative to local topography. Contrasts between the north and south slopes have important implications on direct runoff generation during the melt period. Situations similar to the study site can be found elsewhere in subarctic North America and the observed processes have a bearing upon hydrological modelling for the subarctic environment.


2007 ◽  
Vol 4 (4) ◽  
pp. 2143-2167 ◽  
Author(s):  
P. M. Kienzler ◽  
F. Naef

Abstract. Subsurface storm flow (SSF) can play a key role for the runoff generation at hillslopes. Quantifications of SSF suffer from the limited understanding of how SSF is formed and how it varies in time and space. This study concentrates on the temporal variability of SSF formation. Controlled sprinkling experiments at three experimental slopes were replicated with varying precipitation intensity and varying antecedent precipitation. SSF characteristics were observed with hydrometric measurements and tracer experiments. SSF response was affected in different ways and to varying degree by changes of precipitation intensity and antecedent precipitation. The study showed that the influence of antecedent soil moisture on SSF response depends on the type of SSF formation. Formation of subsurface stormflow was hardly influenced by the increase of precipitation intensity. As a consequence, subsurface flow rates were not increased by higher precipitation intensity. Different soil structures determined runoff formation at different precipitation intensities. Saturation and flow formation occurred at the base of the soil, but also within the topsoil during high precipitation intensity. This implies that timing and magnitude of flow response can change substantially at different precipitation intensities.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 240 ◽  
Author(s):  
Giuseppe Bombino ◽  
Pietro Denisi ◽  
Josè Gómez ◽  
Demetrio Zema

When olive groves are cultivated on clayey soils with steep gradients, as in many Mediterranean areas, reducing the runoff and soil erosion rates by adopting proper soil management practices is imperative. A soil cover by pruning residues may represent an alternative to the commonly adopted mechanical tillage. This study evaluates the water infiltration rates and surface runoff volumes in a steep and clayey olive grove of Southern Italy. These hydrological variables are measured at the plot scale under four soil management practices (mechanical tillage, total artificial protection of soil and soil cover with two different rates of vegetal residues). The measurements have been carried out using a rainfall simulator under dry (undisturbed) and wet (that is, on soils disturbed by intense rainfall) conditions. The mechanical tillage leads to lower water infiltration rates and higher runoff production. The retention of a soil cover by vegetal residues (in the range 3.5–17.5 tons/ha of dry matter) reduces the runoff rate on average by 30%, mainly because of the increased soil infiltration rates (over 100%, compared to mechanical tillage). After soil disturbance due to antecedent rainfall, the runoff generation capacity of a soil disturbed by a heavy precipitation significantly increased compared to undisturbed soils because of the decrease in soil infiltration rates. Overall, the retention of vegetal residues over the soil may be advisable to reduce surface runoff generation rates, particularly for saturated soils.


1973 ◽  
Vol 9 (3) ◽  
pp. 275-279 ◽  
Author(s):  
T. M. Lim

SUMMARYA detached-leaf technique is described for assessing susceptibility of Hevea clones to Oidium heveae, based on intensity of sporulation. This offers a rapid, systematic method of screening clones in vitro against the disease, in place of the current nursery and field methods.


Sign in / Sign up

Export Citation Format

Share Document