scholarly journals Initial Floristic Response to High Severity Wildfire in an Old-Growth Coast Redwood (Sequoia sempervirens (D. Don) Endl.) Forest

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1135
Author(s):  
Mojgan Mahdizadeh ◽  
Will Russell

Climate driven increases in fire frequency and severity are predicted for Mediterranean climatic zones, including the Pacific coast of California. A recent high severity wildfire that burned in the Santa Cruz Mountains affected a variety of vegetation types, including ancient coast redwood (Sequoia sempervirens (D. Don) Endl.) stands. The purpose of this study was to characterize the survival and initial recovery of vegetation approximately six months after the fire. We sampled thirty randomly selected points in an old-growth coast redwood forest to examine and compare survival, crown retention, and post fire regeneration of trees by species, and the recovery of associated understory plant species. Sequoia sempervirens exhibited the highest post-fire survival (95%), with lower survival rates for subcanopy hardwood associates including tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos) (88%), coast live oak (Quercus agrifolia Nee.) (93%), Pacific wax myrtle (Myrica californica (Cham. & Schltdl.) Wilbur) (75%), Pacific madrone (Arbutus menziesii Pursh) (71%), and the lowest survival recorded for the canopy codominant Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) (15%). Canopy retention and post fire regeneration were also highest for S. sempervirens and lowest for P. menziesii, indicating that S. sempervirens had a competitive advantage over P. menziesii following high severity crown fire. Both canopy survival and regeneration were greater for larger height and diameter trees; and basal sprouting was positively associated with tree height and diameter for S. sempervirens and N. densiflorus. Observed recovery of understory species was modest but included the reemergence of coast redwood associated herbaceous species. The robust nature of survival and recovery of S. sempervirens following this extreme fire event suggest that the removal of scorched, and the seeding or planting of trees, following this type of fire is contraindicated. The decline of P. menziesii is of concern, however, and suggests that repeated high severity fires driven by climate change could eventually lead to vegetation type conversion.

2000 ◽  
Vol 78 (11) ◽  
pp. 1408-1419 ◽  
Author(s):  
Deborah L Rogers

Coast redwood (Sequoia sempervirens (D. Don) Endl.) has long-lived individual trees that can reproduce both sexually and asexually. Allozyme markers indicate that, in old-growth populations in northern California, 15-34% of clones are multistemmed. Of those, they have few stems per clone, and none are very spatially pervasive. There is much variety in the clonal configurations observed, including circular, linear, and (or) disjunct arrangements. Visual assessment is a poor predictor of clonal identity and fairy ring structures more often than not contain multiple genotypes. In this first allozyme study of coast redwood, high levels of genetic variation are observed, higher than those observed for most other western conifers. These levels are perhaps related to the species' hexaploid condition, ancient phylogenetic lineage, and historically broader natural range. There are also generally high levels of genotypic diversity. Upland sites, with more frequent and intense fires, do not differ significantly in genotypic diversity from the more mesic lowland sites. Population structure in coast redwood seems to resemble the classic pattern for many open-pollinated conifers: much diversity within and little among populations. However, this is not a rangewide study. The current levels and structure of genetic and genotypic diversity in old-growth populations suggests episodic recruitment. The long-lived nature of individual stems and the capacity for asexual reproduction may allow clones to exist indefinitely, thus challenging some of the generalizations in evolutionary theory that are based on sexually reproducing species.Key words: clones, asexual reproduction, allozyme diversity, conifer, gymnosperm, polyploid.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
David Cowman ◽  
Will Russell

Abstract Background With the prevalence of catastrophic wildfire increasing in response to widespread fire suppression and climate change, land managers have sought methods to increase the resiliency of landscapes to fire. The application of prescribed burning in ecosystems adapted to fire can reduce fuel load and fire potential while minimizing impacts to the ecosystem as a whole. Coast redwood forests have historically experienced fire from both natural and anthropogenic sources, and are likely to respond favorably to its reintroduction. Results Random sampling was conducted in three burned sites and in three unburned sites, in an old-growth coast redwood (Sequoia sempervirens [D. Don] Endl.) forest. Data were collected on fuel, forest structure, and understory species composition and compared between treatments. Downed woody fuel, duff depth, litter depth, and density of live woody fuels were found to be significantly lower on sites treated with fire compared to unburned sites. Density of the dominant overstory canopy species, coast redwood and Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco), remained consistent between treatments, and the abundance of herbaceous understory plant species was not significantly altered by burning. In addition, both downed woody fuel and live fuel measures were positively correlated with time since last burn, with the lowest measures on the most recently burned sites. Conclusions Our results indicated that the use of prescribed burning in old-growth redwood forests can provide beneficial reductions in live and dead surface fuels with minimal impacts to overstory trees and understory herbaceous species.


2003 ◽  
Vol 79 (3) ◽  
pp. 602-612 ◽  
Author(s):  
Luigi E Morgantini ◽  
John L Kansas

Weyerhaeuser Company Ltd. is developing harvest strategies that will maintain appropriate levels of late to very late seral stages ("old growth") in its Drayton Valley Forest Management Area. This management area encompasses 490 570 ha in the Foothills and Rocky Mountain Natural Regions of west-central Alberta. In planning for future forest landscapes, Weyerhaeuser intends to maintain a range of age structures consistent with the ecological processes characteristic of each natural region and subregion. The absence of a discrete point separating mature forest from old growth means that the age at which a stand is currently identified as "old growth" and subject to special management practices is arbitrary. In a research study initiated in the summer of 2000, we seek to understand the differences in structure and composition between forests of various ages and topographic site conditions (elevation, aspect, and slope angle). Using 95 sampling plots in a 123-km2 study area in the Upper Foothills and Subalpine Natural Subregions, we quantified vegetation structure and composition for stands ranging in age from 70 to 300 years. Variables measured and analysed included live-tree height and diameter, snag density, diameter and decay class, downed woody material volume, diameter and decay class, vascular plant species richness, sapling and regeneration density, and duff depth. An old-growth index was developed for each sampled stand that took into account multiple attributes. Preliminary results indicate that specific attributes (snag basal area and density, decay stage and density of downed woody material, variation in live-tree age, and variation in live-tree height and age) separate a younger forest from a more mature one and hence may describe "old-growth" conditions. The age of onset of these old-growth attributes is variable but appears to occur between 160 and 180 years. Key factors other than stand age that contribute to or modify the development of old-growth attributes (as measured by the old-growth index) are elevation and moisture regime (as modified by site position). Further investigation is required to more accurately assess the effect of site factors on old-growth attributes. These results are now used by Weyerhaeuser to address retention of late seral stages in long-term forest planning. Key words: old growth, mature forests, old growth protection, forest management, Alberta, Weyerhaeuser, Rocky Mountains foothills


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


Author(s):  
Dakota M. Spear ◽  
Tessa A. Adams ◽  
Elise S. Boyd ◽  
Madison M. Dipman ◽  
Weston J. Staubus ◽  
...  

2011 ◽  
Vol 20 (4) ◽  
pp. 540 ◽  
Author(s):  
T. G. O'Connor ◽  
C. M. Mulqueeny ◽  
P. S. Goodman

Fire pattern is predicted to vary across an African savanna in accordance with spatial variation in rainfall through its effects on fuel production, vegetation type (on account of differences in fuel load and in flammability), and distribution of herbivores (because of their effects on fuel load). These predictions were examined for the 23 651-ha Mkuzi Game Reserve, KwaZulu-Natal, based on a 37-year data set. Fire return period varied from no occurrence to a fire every 1.76 years. Approximately 75% of the reserve experienced a fire approximately every 5 years, 25% every 4.1–2.2 years and less than 1% every 2 years on average. Fire return period decreased in relation to an increase in mean annual rainfall. For terrestrial vegetation types, median fire return periods decreased with increasing herbaceous biomass, from forest that did not burn to grasslands that burnt every 2.64 years. Fire was absent from some permanent wetlands but seasonal wetlands burnt every 5.29 years. Grazer biomass above 0.5 animal units ha–1 had a limiting influence on the maximum fire frequency of fire-prone vegetation types. The primary determinant of long-term spatial fire patterns is thus fuel load as determined by mean rainfall, vegetation type, and the effects of grazing herbivores.


2008 ◽  
Vol 17 (5) ◽  
pp. 602 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Volker C. Radeloff ◽  
Nicholas S. Keuler ◽  
Robert S. Taylor ◽  
Todd J. Hawbaker ◽  
...  

Humans influence the frequency and spatial pattern of fire and contribute to altered fire regimes, but fuel loading is often the only factor considered when planning management activities to reduce fire hazard. Understanding both the human and biophysical landscape characteristics that explain how fire patterns vary should help to identify where fire is most likely to threaten values at risk. We used human and biophysical explanatory variables to model and map the spatial patterns of both fire ignitions and fire frequency in the Santa Monica Mountains, a human-dominated southern California landscape. Most fires in the study area are caused by humans, and our results showed that fire ignition patterns were strongly influenced by human variables. In particular, ignitions were most likely to occur close to roads, trails, and housing development but were also related to vegetation type. In contrast, biophysical variables related to climate and terrain (January temperature, transformed aspect, elevation, and slope) explained most of the variation in fire frequency. Although most ignitions occur close to human infrastructure, fires were more likely to spread when located farther from urban development. How far fires spread was ultimately related to biophysical variables, and the largest fires in southern California occurred as a function of wind speed, topography, and vegetation type. Overlaying predictive maps of fire ignitions and fire frequency may be useful for identifying high-risk areas that can be targeted for fire management actions.


Sign in / Sign up

Export Citation Format

Share Document