scholarly journals Climate and Management Factors Underlying Changes in Beech Forest Herbaceous Layer Plant Communities in the Polish Eastern Carpathians

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1446
Author(s):  
Anna Bugno-Pogoda ◽  
Tomasz Durak

The herbaceous vegetation and forest stand characteristics in European beech forests growing in the Polish part of the Eastern Carpathians have changed over the last 40 years. This has been influenced by many factors, including land-use change, forest management and climate change. This study investigates changes in forest cover and structure and the associated changes in herbaceous layer plant communities and seeks to elucidate whether and how beech forest herbaceous layer communities have been affected by climate change. The study used information from archival and current land cover maps, semi-permanent sampling plots, forest management plans for the Forest Districts of Brzozów, Lesko and Ustrzyki Dolne and meteorological weather station data compiled for three study periods of herbaceous vegetation (1970s, 2000s, 2010s). In the study area, the regular shelterwood system was changed to an irregular shelterwood system that produces stands with a complex overstorey structure. The results revealed the important role of light availability in shaping the species composition of the herbaceous layer in semi-natural Carpathian beech forests, which was strongly related to the course of management activities. An overall decrease in the number of species during the 2010s is linked to the ageing of beech forests, increased intensity of management activities in ageing stands, competition from understorey vegetation and lower soil moisture that can be linked to climate change. Our study partially supports the existing findings that more manipulative forest management systems can play an important role in countering the current and expected effects of climate change on the forest ecosystem because of the low degree of spatial differentiation of the stand’s structure (developmental stages). Therefore, foresters managing the structure of stands should strive to create a forest structure with high variability of developmental stages on a regional scale.

2014 ◽  
Vol 23 (14) ◽  
pp. 3657-3671 ◽  
Author(s):  
Jessica de Koning ◽  
Esther Turnhout ◽  
Georg Winkel ◽  
Marieke Blondet ◽  
Lars Borras ◽  
...  

2008 ◽  
pp. 89-106
Author(s):  
Sasa Eremija

This paper deals with vegetation in series of sample plots put in the aim to define ecological-vegetational units within forest management unit 'Dubicka gora' and to make basis and scope of future forest management. Research encompassed montane beech forest of Iliyian region (Fagetum montanum illyricum, Fuk. et Stef., 1958) and its more mesic type, forest of beech and Acer obtusatum (Aceri obtusati-Fagetum, Fuk. et Stef., 1963). On the basis of floristic composition and site conditions in the community Fagetum montanum illyricum, four subcommunities were set apart: typicum, aceretosum, drymetosum and geranietosum.


2016 ◽  
Vol 44 (2) ◽  
pp. 625-633 ◽  
Author(s):  
Marius BUDEANU ◽  
Any Mary PETRITAN ◽  
Flaviu POPESCU ◽  
Diana VASILE ◽  
Nicu Constantin TUDOSE

In this study, different approaches were used to investigate the vulnerability of beech forests, located at the eastern limit of their natural range, to climate change. To accomplish this, six 2500 m2 plots were sampled in four European beech forest genetic resources, located in Romania at different altitudinal levels, varying from 230 to 580 m in the Bacău hills and between 650 and 1300 m in the Curvature Carpathian (Braşov region). The analysis of trees phenotypic traits, their radial growth, and the regeneration, did not indicate a vulnerability of the sampled stands to the fluctuations of the environmental factors from the 1950-2014 period. The growth indices of all three populations of Bacău hills are negatively correlated with both June air temperature of current year and September of the previous year. The precipitation amount of September previous year positively influenced the growth indices. The radial growth of plots in Braşov region is slightly linked to the climate. The temperature during the growing season represents a limiting factor for stands that are located outside of the optimal altitudinal species distribution (600-1200 m, in Romania), especially at low altitudes. Our results indicated that a rise of the temperature accompanied by a possible reduction of the precipitations (as is predicted for the coming years) could increase the sensibility of beech forests at lower altitude.


2021 ◽  
Vol 4 ◽  
Author(s):  
Stephanie Rehschuh ◽  
Mathieu Jonard ◽  
Martin Wiesmeier ◽  
Heinz Rennenberg ◽  
Michael Dannenmann

Drought-sensitive European beech forests are increasingly challenged by climate change. Admixing other, preferably more deep-rooting, tree species has been proposed to increase the resilience of beech forests to drought. This diversification of beech forests might also affect soil organic carbon (SOC) and total nitrogen (TN) stocks that are relevant for a wide range of soil functions and ecosystem services, such as water and nutrient retention, filter functions and erosion control. Since information of these effects is scattered, our aim was to synthesize results from studies that compared SOC/TN stocks of beech monocultures with those of beech stands mixed with other tree species as well as monocultures of other tree species. We conducted a meta-analysis including 38 studies with 203, 220, and 160 observations for forest floor (i.e., the organic surface layer), mineral soil (0.5 m depth) and the total soil profile, respectively. Monoculture conifer stands had higher SOC stocks compared to monoculture beech in general, especially in the forest floor (up to 200% in larch forests). In contrast, other broadleaved tree species (oak, ash, lime, maple, hornbeam) showed lower SOC stocks in the forest floor compared to beech, with little impact on total SOC stocks. Comparing mixed beech-conifer stands (average mixing ratio with regard to number of trees 50:50) with beech monocultures revealed significantly higher total SOC stocks of around 9% and a smaller increase in TN stocks of around 4%. This equaled a SOC accrual of 0.1 Mg ha−1 yr−1. In contrast, mixed beech-broadleaved stands did not show significant differences in total SOC stocks. Conifer admixture effects on beech forest SOC were of additive nature. Admixing other tree species to beech monoculture stands was most effective to increase SOC stocks on low carbon soils with a sandy texture and nitrogen limitation (i.e., a high C/N ratio and low nitrogen deposition). We conclude that, with targeted admixture measures of coniferous species, an increase in SOC stocks in beech forests can be achieved as part of the necessary adaptation of beech forests to climate change.


2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


Sign in / Sign up

Export Citation Format

Share Document