scholarly journals Exploring the Effects of Thinning on Cunninghamia lanceolata Lamb. Carbon Allocation in Southwestern China Using a Process-Based Model

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1590
Author(s):  
Hao Yang ◽  
Ziyan Liao ◽  
Angang Ming ◽  
Ning Miao

We investigated the effects of thinning intensity on the carbon allocation of Cunninghamia lanceolata Lamb. Hook by analyzing the stand growth and carbon content of a plantation under three thinning intensities (I: 70%; II: 50%; III: 30%) and with no thinning treatment. Using the carbon balance framework of the CROwn BASe (CROBAS) model and multi-source inventory data, we calibrated the parameters of the CROBAS-C. lanceolata (CROBAS-CL) model to simulate the carbon content in the plantation. We validated the CROBAS-CL model by comparing the predicted stand diameter at breast height (DBH) and stand height (H) with the measured values. Finally, the predicted stand carbon was compared with the soil carbon to assess the dynamics and allocation of ecosystem carbon content. Overall, our findings suggest that the predicted stand carbon of CROBAS-CL satisfies the statistical test requirements: the deviation of height and DBH predicted by the CROBAS-CL model from the measured height and DBH are less than 0.087 m and 0.165 cm, respectively. These results confirm that the model is useful for a dynamic prediction of stand carbon in C. lanceolata plantations. Based on the results of the proposed model, we determine that Thinning III (30% thinning intensity) is beneficial for the growth of C. lanceolata plantations and improving soil carbon sequestration. Additionally, the simulated carbon storage of an individual tree in the C. lanceolata plantation gradually increased with the tree age. Our study provides a strong reference for the efficient operation and management of C. lanceolata plantations in southwestern China.

2005 ◽  
Vol 35 (7) ◽  
pp. 1767-1778 ◽  
Author(s):  
Tuula Jaakkola ◽  
Harri Mäkinen ◽  
Pekka Saranpää

The effect of thinning intensity on growth and wood density in Norway spruce (Picea abies (L.) Karst.) was investigated in two long-term thinning experiments in southeastern Finland. The stands were approaching maturity, and their development had already been studied for 30 years. The intensities of thinning were low, normal, and high (i.e., the stand basal area after the thinning was, on average, 40, 27, and 24 m2·ha–1, respectively, in Heinola, and 30, 28, and 17 m2·ha–1 in Punkaharju, respectively). Compared with the low thinning intensity, the normal and high thinning intensities increased the basal-area increment of individual trees by 52% and 68%, respectively. Normal and high thinning intensities resulted in a relatively small reduction (1%–4%) of mean ring density compared with low thinning intensity. The random variation in wood density between and within trees was large. About 27% of the total variation in wood density was related to variation between rings. Our results indicate that the prevailing thinning intensities in Norway spruce stands in Fennoscandia cause no marked changes in wood density. At least, the possible reduction in wood density is low compared with the increase in individual tree growth.


2004 ◽  
Vol 34 (7) ◽  
pp. 1538-1542 ◽  
Author(s):  
Heidi Steltzer

Soil carbon (C) and nitrogen (N) pools were measured under the canopy of 29 white spruce (Picea glauca (Moench) Voss) trees and in the surrounding tundra 3 and 6 m away from each tree at three sites of recent forest expansion along the Agashashok River in northwestern Alaska. The aim was to characterize the potential for forest expansion to lead to increased soil C pools across diverse tundra types. Soil C beneath the trees correlated positively with tree age, suggesting that tree establishment has led to C storage in the soils under their canopy at a rate of 18.5 ± 4.6 g C·m–2·year–1. Soil C in the surrounding tundra did not differ from those under the trees and showed no relationship to tree age. This characterization of the soil C pools at the 3-m scale strengthens the assertion that the pattern associated with the trees is an effect of the trees, because tree age cannot explain variation among tundra sampling locations at this scale. Potential mechanisms by which these white spruce trees could increase soil C pools include greater production and lower litter quality.


2003 ◽  
Vol 36 (4) ◽  
pp. 428-434
Author(s):  
Takuya Kawanishi ◽  
Hiroyuki Amano ◽  
Eriko Masani ◽  
Yoshishige Hayashi ◽  
Naoto Kamata ◽  
...  

Author(s):  
Nils Henriksson ◽  
Oskar Franklin ◽  
Lasse Tarvainen ◽  
John Marshall ◽  
Judith Lundberg-Felten ◽  
...  

The mycorrhizal symbiosis is ubiquitous in boreal forests. Trees and plants provide their fungal partners with photosynthetic carbon in exchange for soil nutrients like nitrogen, which is critical to the growth and survival of the plants. But plant carbon allocation to mycorrhizal symbionts can also fuel nitrogen immobilization, hampering tree growth. Here we present results from field and greenhouse experiments combined with mathematical modelling, showing that mycorrhizal fungi can be simultaneously mutualistic to an individual tree and parasitic to the networked community of trees. Mycorrhizal networks connect multiple plants and fungi, and we show that each tree gains additional nitrogen at the expense of its neighbors by supplying more carbon to the fungi. But this additional carbon supply eventually aggravates nitrogen immobilization in the shared fungal biomass. Individual trees may thus independently benefit from increasing their carbon investment to mycorrhiza, while causing a decline in nitrogen availability for the whole plant community. We illustrate the evolutionary underpinnings of this situation by drawing on the analogous the tragedy of the commons, and explain how rising atmospheric CO2 may lead to greater nitrogen immobilization in the future.


Soil Carbon ◽  
2014 ◽  
pp. 249-257
Author(s):  
Diane E. Stott ◽  
Cynthia A. Cambardella ◽  
Douglas L. Karlen

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1019
Author(s):  
Yuji Sakai ◽  
Masataka Nakamura ◽  
Chang Wang

Increasing soil carbon storage and biomass utilization is an effective process for mitigating global warming. Coal bio-briquettes (CBB) are made using two low-ranked coals with high sulfur content, corn stalks, and calcium hydroxide, and the combustion ash can ameliorate the physicochemical properties in salt-affected soil. CBB ash contains mainly calcium compounds, such as calcium sulfate, calcium hydroxide, and calcium carbonate, and coal fly ash and biomass ash. In this paper, changes in soil carbon and nitrogen content through salt-affected soil amelioration during 5 months using two CBB ashes and pig manure were examined in Northeast China. Application rates of CBB ash were 0 tha−1 (control), 11.6 tha−1, 23.2 tha−1, 46.4 tha−1, and 69.6 tha−1. Consequently, total carbon content in topsoil (0–0.15 m) after harvest of maize in all test fields indicated a range between 27.7 tCha−1 and 50.2 tCha−1, and showed increased levels compared to untreated salt-affected soil. In a 3.0% (69.6 tha−1) application plot of only CBB ash with higher carbon and higher exchangeable Ca2+, the carbon content increased by 51.5% compared to control plot, and changes in carbon sequestration compared to untreated soil was roughly twice that of the control plot. CBB ash contributed to carbon application and pig manure supply as a form of N fertilization in the case of all test plots. Changes in carbon content due to soil amelioration have a significant relationship with changes in corn production and soil chemical properties, such as pH, Na+, Cl−, sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP). Therefore, CBB production from low-ranked coal and waste biomass, and the use of CBB ash in agriculture is advocated as an effective means for sequestering carbon.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
W. M. Dimuthu Nilmini Wijeyaratne ◽  
Pawani Madhushani Liyanage

Mangrove ecosystems are identified as important blue carbon ecosystems because they play an important role in carbon sequestration among the coastal ecosystems. The present study was conducted to develop an allometric model to determine the stem carbon content of Rhizophora mucronata in a conserved tropical mangrove ecosystem. The stepwise regression with backward elimination was used to identify the best fit model to predict the stem carbon content of Rhizophora mucronata. The allometric equation, Ln C = −2.403 + 2.247 Ln DBH, where C: stem carbon content and DBH: diameter at breast height, was constructed to be evaluated and validated as the most suitable and practically applicable model. The reliability of the model was 76.7%, and the model was significant at 95% level of significance. The model bias values and the model efficiency values for the best fit model suggested that the model is suitable to be used practically. The present study used a nondestructive method of measuring individual tree parameters to develop this allometric equation to predict the stem carbon content and it is considered as an environmentally friendly approach with minimum damage to the tree.


Sign in / Sign up

Export Citation Format

Share Document