scholarly journals Drought Stress Reaction of Growth and Δ13C in Tree Rings of European Beech and Norway Spruce in Monospecific Versus Mixed Stands Along a Precipitation Gradient

Forests ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 177 ◽  
Author(s):  
Cynthia Schäfer ◽  
Thorsten Grams ◽  
Thomas Rötzer ◽  
Aline Feldermann ◽  
Hans Pretzsch
2005 ◽  
Vol 35 (11) ◽  
pp. 2756-2764 ◽  
Author(s):  
Werner Borken ◽  
Fritz Beese

Soil respiration was measured in adjacent pure and mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) at Solling, Germany. Forest type had a significant effect on soil respiration, which was highest in the pure beech stand and lowest in the pure spruce stand. Both throughfall and soil temperature increased with the proportion of beech. Additionally, microbial respiration and biomass in the organic (O) horizons increased sequentially from the pure spruce to the pure beech stand, suggesting that abiotic and biotic factors enhanced the decomposition of litter under beech. Because the spruce litter decomposition rate was low, carbon (C) stocks of the O horizons increased with the proportion of spruce, from 1.6 to 5.1 kg C·m–2. The removal of the O horizons decreased soil respiration by 31%–45%, indicating a large contribution of the mineral soil and roots to total soil respiration. Turnover times of organic C in the O horizons ranged between 5.5 years in the pure beech stand and 20.6 years in the pure spruce stand. Our results suggest that tree species conversion may alter the turnover of soil organic matter, and thus the sequestration of organic C in the O horizons.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 73 ◽  
Author(s):  
Steffi Heinrichs ◽  
Christian Ammer ◽  
Martina Mund ◽  
Steffen Boch ◽  
Sabine Budde ◽  
...  

Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20%.


2017 ◽  
Vol 63 (No. 6) ◽  
pp. 254-262 ◽  
Author(s):  
Novák Jiří ◽  
Dušek David ◽  
Slodičák Marian ◽  
Kacálek Dušan

Experimental results from the first thinning in mixed stands are not broadly experienced by forestry practice. To extend the experience with the thinning of a mixed stand, we studied thinned and unthinned mixtures of Norway spruce with European beech on two study sites in the Czech Republic, which represented different conditions: Všeteč (age of 19–35 years) – originally beech dominated site at 440 m a.s.l. and Deštné (age of 17–33 years) – originally spruce with beech site at 990 m a.s.l. Spruce and beech were mixed individually or in small groups. As the for number of trees, mixtures were 35–54% beech and 46–65% spruce at a lower altitude and 7–30% beech and 70–93% spruce at a higher altitude. In the period 1997–2013, we observed annually: mortality, diameter at breast height of all trees and height of trees (minimum 30 individuals) that represented diameter distribution. Results showed that the growth and development of young mixed spruce/beech stands were positively influenced by the first pre-commercial thinning on both locations. The most pronounced effect of thinning consisted in a decreased amount of basal area of dead trees. On control plots, salvage cut accounted for 34 and 46%, while on thinned plots it reached only 7–8% (thinned from above) and 18% (thinned from below) of basal area periodic increment during the 16-year study period. In contrast, diameter distribution was still relatively wide (i.e. an important amount of thin trees was left) at the end of observations on all plots of both study sites. Thinned stands also showed the better static stability (expressed as an h/d ratio) of dominant spruces compared to unthinned stands on both locations. Additionally, thinning supported the spruce share at a lower altitude and the  beech share at a higher altitude.


2018 ◽  
Vol 48 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Ioan Dutcă ◽  
Richard Mather ◽  
Florin Ioraş

In this paper, we report an investigation of how forest stand mixture may affect biomass allometric relationships in Norway spruce (Picea abies (L.) Karst.). Analysis of aboveground biomass data was conducted for 50 trees: 25 sample trees from a pure Norway spruce stand and 25 from a mixed stand of Norway spruce with European beech (Fagus sylvatica L.). ANCOVA results demonstrated that individual-tree biomass allometry of the pure stand significantly differed from that of the mixed stand. Allometric characteristics depended on the biomass component recorded and the type of biomass predictor used. When predicted by diameter at breast height and (or) height, the total aboveground biomass of mixed-stand trees was significantly less than that for pure-stand trees. This “apparent” lower aboveground biomass was attributed to the lower branch and needle biomass proportions of trees growing in mixed stand. The findings indicate that caution should be exercised when applying biomass allometric models developed from pure stands to predict tree biomass in mixed stands (and vice versa), as such data treatment may introduce significant bias.


2010 ◽  
Vol 67 (7) ◽  
pp. 712-712 ◽  
Author(s):  
Hans Pretzsch ◽  
Joachim Block ◽  
Jochen Dieler ◽  
Phan Hoang Dong ◽  
Ulrich Kohnle ◽  
...  

2019 ◽  
Vol 104 ◽  
pp. 65-80 ◽  
Author(s):  
Stefan Friedrich ◽  
Carola Paul ◽  
Susanne Brandl ◽  
Peter Biber ◽  
Katharina Messerer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document