scholarly journals Forty-Eight Years of Forest Succession: Tree Species Change across Four Forest Types in Mid-Missouri

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 633 ◽  
Author(s):  
Benjamin O. Knapp ◽  
Stephen G. Pallardy

In the central and eastern United States, many forest ecosystems have undergone recent shifts in composition and structure that may conflict with contemporary management objectives. Long-term forest inventory data were used to determine patterns of forest succession over a 48-year period for four forest types in mid-Missouri: bottomlands, dry ridge and slope, glade-like, and mesic slopes. All forest types increased in stand basal area and overstory quadratic mean diameter through time, with concomitant decreases in the number of midstory trees. Sugar maple (Acer saccharum Marshall) increased in importance value on dry ridge and slope and mesic slope forest types, largely due to the accumulation of trees in smaller diameter classes. White oak (Quercus alba L.) increased in overstory basal area in dry ridge and slope plots through the duration of the study, whereas black oak (Quercus velutina Lam.) and Shumard oak (Quercus shumardii Buckley) decreased in overstory density and basal area through time. Oak stems were nearly absent from the midstory across forest types in the recent sampling, suggesting future challenges for maintaining oak-dominated canopies following attrition of canopy trees through time on upland forest types. In glade-like plots, eastern redcedar (Juniperus virginiana L.) increased in both overstory density and basal area through time, and Shumard oak decreased in density. The importance value of chinkapin oak (Quercus muehlenbergii Engelm.) in the overstory decreased through time in glade-like plots, largely due to the increase in density of eastern redcedar rather than the loss of chinkapin oak from the overstory. The patterns of succession in this forest landscape of mid-Missouri suggest that forest management may be needed to address two common contemporary concerns: (1) the need for increasing oak advance reproduction and recruitment to maintain oak as a canopy species; and (2) reducing eastern redcedar encroachment for glade restoration and management.

2011 ◽  
Vol 28 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Eric J. Holzmueller ◽  
John W. Groninger ◽  
Charles M. Ruffner ◽  
Trevor B. Ozier

Abstract Light harvesting and no cutting are two common management regimes in oak-dominated forests in the Ozark Hills of southern Illinois. We compared changes in overstory stand composition between 1980 and 2000 among forest inventory plots that were lightly harvested after initial sampling and plots that were uncut during the same time period. Total white oak (Quercus alba L.) basal area increased for both management regimes. Black oak (Quercus velutina Lam.) overstory density decreased, and sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) density increased for both management regimes. Although overall density of oak was maintained by both management regimes, species and diameter class-specific response varied. Additional silvicultural activities may be necessary to sustain oak in both lightly harvested and uncut plots, with light harvesting providing opportunities to at least partially offset costs.


2006 ◽  
Vol 52 (Special Issue) ◽  
pp. S3-S13 ◽  
Author(s):  
M.E. Fenn ◽  
T.G. Huntington ◽  
S.B. McLaughlin ◽  
C. Eagar ◽  
A. Gomez ◽  
...  

Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of leaching of base cations, increased availability of soil Al, and the accumulation and ultimate transmission of acidity from forest soils to streams. Losses of calcium from forest soils and forested watersheds have now been documented as a sensitive early indicator and a functionally significant response to acid deposition for a wide range of forest soils in North America. For red spruce, a clear link has been established between acidic deposition, alterations in calcium and aluminum supplies and increased sensitivity to winter injury. Cation depletion appears to contribute to sugar maple decline on some soils, specifically the high mortality rates observed in northern Pennsylvania over the last decade. While responses to liming have not been systematically examined in North America, in a study in Pennsylvania, restoring basic cations through liming increased basal area growth of sugar maple and levels of calcium and magnesium in soil and foliage. In the San Bernardino Mountains in southern California near the west coast, the pH of the A horizon has declined by at least 2 pH units (to pH 4.0–4.3) over the past 30 years, with no detrimental effects on bole growth; presumably, because of the Mediterranean climate, base cation pools are still high and not limiting for plant growth.


2020 ◽  
Vol 50 (11) ◽  
pp. 1215-1227
Author(s):  
Don C. Radcliffe ◽  
Stephen N. Matthews ◽  
David M. Hix

Shade-tolerant mesophytic tree species tend to dominate the understories of present-day oak–hickory and mixed-hardwood forests in the eastern United States. We quantified the sapling density associations with abiotic and biotic variables for three important mesophytic species: red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), and American beech (Fagus grandifolia Ehrh.) in southeastern Ohio. In this study, we sampled 165 permanent plots in oak-dominated, topographically diverse, mature (>90 years old), second-growth forests following a time span of 21–25 years (1993–1995 and 2016–2018) between samples on the Athens and Marietta units of the Wayne National Forest. Our models showed that sugar maple was strongly associated with high pH soils and red maple was strongly associated with low pH soils. Additionally, red maple was associated with upper slope positions and older stands, while American beech was associated with lower slopes, northeasterly aspects, and northeast-facing upper slopes. Basal area of competing species, solum depth, and management unit were not significantly related to sapling density for our focal species. American beech sapling density doubled between the two sampling periods, while densities of both maple species declined by half. Our results will help scientists and managers by providing insight into potential future composition of currently oak-dominated forests in areas without active management intervention.


2003 ◽  
Vol 20 (2) ◽  
pp. 85-91 ◽  
Author(s):  
John M. Lhotka ◽  
James J. Zaczek

Abstract This study investigated whether soil scarification during the presence of abundant white oak (Quercus alba L.) acorns and other mast could be used to increase the density of oak reproduction and reduce competitive midstory species in a mid-successional mixed-oak upland forest. The study was conducted in a 7.3 ha forest with a mature oak overstory and a well-developed midstory of sugar maple (Acer saccharum Marsh.) and pawpaw (Asmina triloba Dunal.) in southern Illinois. The soil scarification was conducted in the autumn after acorn dissemination using a crawler tractor with a six-tooth brush rake. One growing season after treatment, significantly higher numbers of oak seedlings, primarily white oak, were present in the scarified plots (5,164 ha-1) compared to the control plots (1,273 ha-1). Seedling density of all other species classes did not differ between treatments. Scarification affected 61% of midstory trees and thus reduced their density and competitive position. Of these trees, 21% of stems were completely removed by the scarification treatment. Results suggest that, in the presence of abundant acorns, scarification may increase the number of new oak germinants in stands lacking advanced oak reproduction. Finally, because scarification increased the density of oak seedlings and reduced competing midstory trees, it can play a role in promoting the establishment of advanced oak reproduction. North. J. Appl. For. 20(2):85–91.


2013 ◽  
Vol 29 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Ivar Vleut ◽  
Samuel Israel Levy-Tacher ◽  
Willem Frederik de Boer ◽  
Jorge Galindo-González ◽  
Neptalí Ramírez-Marcial

Abstract:Species-specific traits of trees affect ecosystem dynamics, defining forest structure and understorey development. Ochroma pyramidale is a fast-growing tree species, with life-history traits that include low wood density, short-lived large leaves and a narrow open thin crown. We evaluated forest succession in O. pyramidale-dominated secondary forests, diverse secondary forests, both 10–15 y since abandonment, and rain forests by comparing height, density and basal area of all trees (> 5 cm dbh). Furthermore, we compared species richness of understorey trees and shrubs, and basal area and density of trees of early- and late-successional species (< 5 cm dbh) between forest types. We found that tree basal area (mean ± SD: 32 ± 0.9 m2 ha−1) and height (12.4 ± 1.8 m) of canopy trees were higher, and density (1450 ± 339 ha−1) lower in O. pyramidale forests than in diverse forests, and more similar to rain forest. Understorey shrub diversity and tree seedling density and diversity were lower in O. pyramidale forests than in diverse forests, but these forest types had a similar density of early- and late-successional trees. Canopy openness (> 15%) and leaf litter (> 10 cm) were both highest in O. pyramidale forests, which positively affected density of understorey trees and shrubs and negatively affected density of late-successional trees. In conclusion, O. pyramidale forests presented structural features similar to those of rain forest, but this constrained the establishment of understorey tree species, especially late-successional species, decreasing successional development.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242003
Author(s):  
David Ward

The expansion of woody plants into grasslands and old fields is often ascribed to fire suppression and heavy grazing, especially by domestic livestock. However, it is also recognized that nutrient availability and interspecific competition with grasses and other woody plants play a role in certain habitats. I examined potential factors causing range- and niche expansion by the eastern redcedar Juniperus virginiana, the most widespread conifer in the eastern United States, in multifactorial experiments in a greenhouse. Historical records suggest that the eastern redcedar is a pioneer forest species, and may be replaced as the forest increases in tree density due to shading. Another possible factor that affects its distribution may be nutrient availability, which is higher in old fields and other disturbed lands than in undisturbed habitats. In its historic range, eastern redcedars are particularly abundant on limestone outcrops, often termed ‘cedar barrens’. However, the higher abundance on limestone could be due to reduced interspecific competition rather than a preference for high pH substrates. I manipulated shade, fertilization, lime, and interspecific competition with a common dominant tree, the post oak Quercus stellata. In a separate experiment, I manipulated fire and grass competition. I measured growth rates (height and diameter) and above- and belowground biomass at the end of both experiments. I also measured total non-structural carbohydrates and nitrogen in these plants. Shade was the most important factor limiting the growth rates and biomass of eastern redcedars. I also found that there were significant declines in nitrogen and non-structural carbohydrates when shaded. These results are consistent with the notion that the eastern redcedar is a pioneer forest species, and that shade is the reason that these redcedars are replaced by other tree species. In the second experiment, I found that a single fire had a negative effect on young trees. There was no significant effect of competition with grass, perhaps because the competitive effect was shading by grasses and not nutrient depletion. Overall, the effects of shade were far more apparent than the effects of fire.


2010 ◽  
Vol 27 (3) ◽  
pp. 110-116 ◽  
Author(s):  
Martin-Michel Gauthier ◽  
Douglass F. Jacobs

Abstract We established a study to investigate short-term morphological responses of northern red oak (Quercus rubra L.), white oak (Quercus alba L.), and black walnut (Juglans nigra L.) to a 43% basal area reduction in a mixed planting. Although the effect was not statistically confirmed, thinned northern red oak showed a 23% gain in relative diameter growth and a 25% gain in relative crown surface area expansion compared with nonthinned trees; white oak showed gains of 15 and 10%, respectively. Similar trends were found in percentage of basal area increase for northern red oak (45%) and white oak (37%). Black walnut did not appear to respond to thinning and may have been under less competition from first-tier neighbors than the oaks were. Both northern red oak and white oak were in intermediate and suppressed crown classes, whereas black walnut was in a codominant position. Trends from this study suggest that northern red oak and white oak may respond favorably to thinning when found in lower crown classes where the amount of competition from neighboring trees is high.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1143b-1143
Author(s):  
Orville M. Lindstrom

The cold hardiness of seven deciduous hardwoods, red maple (Acer rubrum L.), white oak, (Quercus alba L.), green ash (Fraxinus pennsylvanica Marsh.), sweetgum (Liguidambar stryaciflua L.), sugar maple (Acer saccharum Marsh.), river birch (Betula nigra L.) and black cherry (Prunus serotina Ehrh.) were evaluated weekly during the fall, winter and spring for three consecutive years. All trees evaluated were established (20-40 years old) and locatd on the Georgia Station Griffin, GA. Each species developed a maximum cold hardiness of at least -30 C by mid-January or early February each season. Response to temperature fluctuations varied with species. Red maple, for example, lost less cold hardiness due to warm mid-winter temperatures than the other species tested, while white oak tended to respond more quickly to the temperature fluctuations. Data will be presented comparing the response of cold hardiness to mid-winter temperature fluctuations for each species for the three year period.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Brice B. Hanberry

Eastern redcedar (Juniperus virginiana L.) is increasing in density in the eastern United States and expanding in range to the west, while western Juniperus species also are increasing and expanding, creating the potential for a novel assemblage. I estimated range expansion and intersection by comparing recent USDA Forest Service Forest Inventory and Analysis surveys (mean year = 2009) to the oldest available surveys (mean year = 1981), with adjustments for sampling changes, and predicted climate envelopes during the following year ranges: 1500–1599, 1800–1849, 1850–1899, 1900–1949, and 1960–1989. During approximately 28 years, eastern redcedar range expanded by about 54 million ha (based on ≥0.5% of total stems ≥12.7 cm in diameter in ecological subsections). Combined range of western species of juniper did not expand. Range intersection of eastern redcedar and western Juniperus species totaled 200,000 km2 and increased by 31,600 km2 over time, representing a novel assemblage of eastern and western species. Predicted ranges during the other time intervals were 94% to 98% of predicted area during 1960–1989, suggesting major climate conditions have been suitable for centuries. The southern western Juniperus species and Rocky Mountain juniper (Juniperus scopulorum Sarg.) have the greatest potential for intersection with eastern redcedar, whereas eastern redcedar may have concluded westward expansion.


2007 ◽  
Vol 31 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Eric Heitzman ◽  
Adrian Grell ◽  
Martin Spetich ◽  
Dale Starkey

Abstract Four mature northern red oak (Quercus rubra L.)–white oak (Quercus alba L.) stands in the Boston Mountains of northern Arkansas were studied to describe the vegetation dynamics of forests heavily impacted by oak decline. Northern red oak was the species most susceptible to decline. Across the four stands, 51–75% of red oak density (trees/ha) was dead or dying, as was 40–70% of the red oak basal area. Red oak damage occurred across a range of tree sizes. Healthy red oak had low populations of red oak borer (Enaphalodes rufulus Haldeman), and dead/dying red oak supported large numbers of borers. Impacts on white oak were less severe and generally limited to smaller trees. Decline had changed what once were red oak-dominated stands to more mixed forests of white oak, hickory (Carya spp.), red oak, blackgum (Nyssa sylvatica Marsh.), and red maple (Acer rubrum L.). Understory trees and seedlings were predominantly blackgum, red maple, hickory, black cherry (Prunus serotina Ehrh), flowering dogwood (Cornus florida L.), and sassafras (Sassafras albidum [Nutt.] Nees). However, well-developed red and white oak advance regeneration was present in all stands. It is unclear if the death of overstory trees will favor the regeneration of nonoaks, or whether oak regeneration will successfully recruit within canopy gaps created by this disturbance.


Sign in / Sign up

Export Citation Format

Share Document