scholarly journals Shade is the most important factor limiting growth of a woody range expander

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242003
Author(s):  
David Ward

The expansion of woody plants into grasslands and old fields is often ascribed to fire suppression and heavy grazing, especially by domestic livestock. However, it is also recognized that nutrient availability and interspecific competition with grasses and other woody plants play a role in certain habitats. I examined potential factors causing range- and niche expansion by the eastern redcedar Juniperus virginiana, the most widespread conifer in the eastern United States, in multifactorial experiments in a greenhouse. Historical records suggest that the eastern redcedar is a pioneer forest species, and may be replaced as the forest increases in tree density due to shading. Another possible factor that affects its distribution may be nutrient availability, which is higher in old fields and other disturbed lands than in undisturbed habitats. In its historic range, eastern redcedars are particularly abundant on limestone outcrops, often termed ‘cedar barrens’. However, the higher abundance on limestone could be due to reduced interspecific competition rather than a preference for high pH substrates. I manipulated shade, fertilization, lime, and interspecific competition with a common dominant tree, the post oak Quercus stellata. In a separate experiment, I manipulated fire and grass competition. I measured growth rates (height and diameter) and above- and belowground biomass at the end of both experiments. I also measured total non-structural carbohydrates and nitrogen in these plants. Shade was the most important factor limiting the growth rates and biomass of eastern redcedars. I also found that there were significant declines in nitrogen and non-structural carbohydrates when shaded. These results are consistent with the notion that the eastern redcedar is a pioneer forest species, and that shade is the reason that these redcedars are replaced by other tree species. In the second experiment, I found that a single fire had a negative effect on young trees. There was no significant effect of competition with grass, perhaps because the competitive effect was shading by grasses and not nutrient depletion. Overall, the effects of shade were far more apparent than the effects of fire.

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Brice B. Hanberry

Eastern redcedar (Juniperus virginiana L.) is increasing in density in the eastern United States and expanding in range to the west, while western Juniperus species also are increasing and expanding, creating the potential for a novel assemblage. I estimated range expansion and intersection by comparing recent USDA Forest Service Forest Inventory and Analysis surveys (mean year = 2009) to the oldest available surveys (mean year = 1981), with adjustments for sampling changes, and predicted climate envelopes during the following year ranges: 1500–1599, 1800–1849, 1850–1899, 1900–1949, and 1960–1989. During approximately 28 years, eastern redcedar range expanded by about 54 million ha (based on ≥0.5% of total stems ≥12.7 cm in diameter in ecological subsections). Combined range of western species of juniper did not expand. Range intersection of eastern redcedar and western Juniperus species totaled 200,000 km2 and increased by 31,600 km2 over time, representing a novel assemblage of eastern and western species. Predicted ranges during the other time intervals were 94% to 98% of predicted area during 1960–1989, suggesting major climate conditions have been suitable for centuries. The southern western Juniperus species and Rocky Mountain juniper (Juniperus scopulorum Sarg.) have the greatest potential for intersection with eastern redcedar, whereas eastern redcedar may have concluded westward expansion.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 633 ◽  
Author(s):  
Benjamin O. Knapp ◽  
Stephen G. Pallardy

In the central and eastern United States, many forest ecosystems have undergone recent shifts in composition and structure that may conflict with contemporary management objectives. Long-term forest inventory data were used to determine patterns of forest succession over a 48-year period for four forest types in mid-Missouri: bottomlands, dry ridge and slope, glade-like, and mesic slopes. All forest types increased in stand basal area and overstory quadratic mean diameter through time, with concomitant decreases in the number of midstory trees. Sugar maple (Acer saccharum Marshall) increased in importance value on dry ridge and slope and mesic slope forest types, largely due to the accumulation of trees in smaller diameter classes. White oak (Quercus alba L.) increased in overstory basal area in dry ridge and slope plots through the duration of the study, whereas black oak (Quercus velutina Lam.) and Shumard oak (Quercus shumardii Buckley) decreased in overstory density and basal area through time. Oak stems were nearly absent from the midstory across forest types in the recent sampling, suggesting future challenges for maintaining oak-dominated canopies following attrition of canopy trees through time on upland forest types. In glade-like plots, eastern redcedar (Juniperus virginiana L.) increased in both overstory density and basal area through time, and Shumard oak decreased in density. The importance value of chinkapin oak (Quercus muehlenbergii Engelm.) in the overstory decreased through time in glade-like plots, largely due to the increase in density of eastern redcedar rather than the loss of chinkapin oak from the overstory. The patterns of succession in this forest landscape of mid-Missouri suggest that forest management may be needed to address two common contemporary concerns: (1) the need for increasing oak advance reproduction and recruitment to maintain oak as a canopy species; and (2) reducing eastern redcedar encroachment for glade restoration and management.


2012 ◽  
Vol 212 (6) ◽  
pp. 1324-1330 ◽  
Author(s):  
Pornnapa Kasemsiri ◽  
Salim Hiziroglu ◽  
Sarawut Rimdusit

2014 ◽  
Vol 32 (3) ◽  
pp. 167-173
Author(s):  
Lucy E. Edwards ◽  
Adam F. Newby ◽  
Charles H. Gilliam ◽  
Glenn B. Fain ◽  
Jeff L. Sibley ◽  
...  

Peat moss and perlite have been major components in greenhouse substrates for over 50 years; however, shortages could occur due to restrictions from environmental concerns, fuel cost, and weather conditions. Due to these factors, research continues to seek available materials as alternative substrate components. These studies evaluated processed eastern redcedar (Juniperus virginiana L.) as an alternative substrate in the greenhouse production of four annual species: petunia (Petunia ×hybrida Juss.), annual vinca [Catharantus roseus (L.) G. Don], wax begonia (Begonia semperflorens-cultorum Hort.), and plumed cockscomb (Celosia argentea L.). Three screen sizes of hammer-milled eastern redcedar (ERC) were used including 0.64, 0.95, and 1.27 cm (0.25, 0.38, and 0.5 in). Plants were grown in peat moss amended with either 25 or 50% ERC (combinations of three screen sizes) and compared to a standard 80:20 peat:perlite mix. Plant growth was similar for petunia and vinca in 50% ERC (1.27 cm screen size) compared to those grown in 80:20 peat:perlite. Plants grown in 25% ERC were similar to plants grown in 80:20 peat:perlite mix for all species in all screen sizes. Root growth was similar to or greater for plants in substrates with 25% ERC when compared to the standard peat:perlite treatment. Amending peat with up to 25% eastern redcedar is an acceptable practice for the four annual species used in this study.


1998 ◽  
Vol 15 (4) ◽  
pp. 216-221 ◽  
Author(s):  
Thomas L. Schmidt ◽  
Mark H. Hansen

Abstract Differences between grazed and ungrazed forestlands in Kansas were investigated based on a statewide sample of all forestlands. Grazing forestlands was found to have a significant relationship to the quality and quantity of trees on forestlands, as seen in lower levels of total volume and growing-stock volume when compared to ungrazed forestlands. In addition, grazed forestlands showed lower average basal areas, younger average stand ages, lower potential productivities, and increased percentages of bare ground. Compared to forestlands without grazing, forestlands with grazing had higher levels of eastern redcedar (Juniperus virginiana L.) seedling regeneration and lower levels of preferred hardwood species regeneration in several forest type groups. Land managers can use these results in their decision-making process concerning whether to graze their deciduous forests. North. J. Appl. For. 15(4):216-221.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 739-743 ◽  
Author(s):  
Wayne K. McNeil ◽  
Jimmy F. Stritzke ◽  
Eddie Basler

Seedlings of winged elm (Ulmus dataMichx.), bur oak (Quercus macrocarpaMichx.), black walnut (Juglans nigraL.), eastern redcedar (Juniperus virginianaL.), and loblolly pine (Pinus taedaL.) were treated in nutrient solution with ring-labeled14C-tebuthiuron {N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea} or14C-hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione]. Four hours later,14C was detected in all sections of winged elm treated with14C-tebuthiuron and14C-hexazinone. Root absorption of the tebuthiuron label by the other species occurred in the order: loblolly pine > bur oak > black walnut = eastern redcedar. The sequence of14C-hexazinone absorption was: loblolly pine > black walnut ≥ bur oak = eastern redcedar. Foliar accumulation of the tebuthiuron label occurred in the order: bur oak > loblolly pine > eastern redcedar = black walnut, whereas the sequence with hexazinone was loblolly pine > bur oak > black walnut = eastern redcedar. The presence of the three metabolites of hexazinone in loblolly pine suggests that it may be resistant to hexazinone as a result of its ability to degrade hexazinone rather than its ability to limit uptake.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 901 ◽  
Author(s):  
Patricia R. Torquato ◽  
Rodney E. Will ◽  
Bo Zhang ◽  
Chris B. Zou

Eastern redcedar (Juniperus virginiana L., redcedar) encroachment is transitioning the oak-dominated Cross-Timbers of the southern Great Plain of the USA into mixed-species forests. However, it remains unknown how the re-assemblage of tree species in a semiarid to sub-humid climate affects species-specific water use and competition, and ultimately the ecosystem-level water budget. We selected three sites representative of oak, redcedar, and oak and redcedar mixed stands with a similar total basal area (BA) in a Cross-Timbers forest near Stillwater, Oklahoma. Sap flow sensors were installed in a subset of trees in each stand representing the distribution of diameter at breast height (DBH). Sap flow of each selected tree was continuously monitored over a period of 20 months, encompassing two growing seasons between May 2017 and December 2018. Results showed that the mean sap flow density (Sd) of redcedar was usually higher than post oaks (Quercus stellata Wangenh.). A structural equation model showed a significant correlation between Sd and shallow soil moisture for redcedar but not for post oak. At the stand level, the annual water use of the mixed species stand was greater than the redcedar or oak stand of similar total BA. The transition of oak-dominated Cross-Timbers to redcedar and oak mixed forest will increase stand-level transpiration, potentially reducing the water available for runoff or recharge to groundwater.


1991 ◽  
Vol 21 (10) ◽  
pp. 1481-1490 ◽  
Author(s):  
Brian J. Palik ◽  
Kurt S. Pregitzer

We reconstructed the height-growth histories of individual Quercusrubra L., Fraxinusamericana L., and Acerrubrum L. growing in a 42-year-old Populusgrandidentata Michx. – Populustremuloides Michx. dominated forest. Species established contemporaneously early in the sere, but temporally separated periods of peak individual establishment occurred among species, such that the majority of Q. rubra established prior to the majority of F. americana and A. rubrum. Species vertical stratification by age 42 paralleled establishment patterns. Height-growth rates were similar among species and between different-aged individuals within species. This suggests that species vertical stratification 42 years after stand initiation was primarily a function of differences in species establishment patterns.


Sign in / Sign up

Export Citation Format

Share Document