scholarly journals Complementing Digital Image Analysis and Laser Distance Meter in Beer Foam Stability Determination

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 113
Author(s):  
Kristina Habschied ◽  
Hrvoje Glavaš ◽  
Emmanuel Karlo Nyarko ◽  
Krešimir Mastanjević

The aim of this research is to investigate the possibility of applying a laser distance meter (LDM) as a complementary measurement method to image analysis during beer foam stability monitoring. The basic optical property of foam, i.e., its high reflectivity, is the main reason for using LDM. LDM measurements provide relatively precise information on foam height, even in the presence of lacing, and provide information as to when foam is no longer visible on the surface of the beer. Sixteen different commercially available lager beers were subjected to analysis. A camera and LDM display recorded the foam behavior; the LDM display which was placed close to the monitored beer glass. Measurements obtained by the image analysis of videos provided by the visual camera were comparable to those obtained independently by LDM. However, due to lacing, image analysis could not accurately detect foam disappearance. On the other hand, LDM measurements accurately detected the moment of foam disappearance since the measurements would have significantly higher values due to multiple reflections in the glass.

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 46
Author(s):  
Emmanuel Karlo Nyarko ◽  
Hrvoje Glavaš ◽  
Kristina Habschied ◽  
Krešimir Mastanjević

Foam stability and retention is an important indicator of beer quality and freshness. A full, white head of foam with nicely distributed small bubbles of CO2 is appealing to the consumers and the crown of the production process. However, raw materials, production process, packaging, transportation, and storage have a big impact on foam stability, which marks foam stability monitoring during all these stages, from production to consumer, as very important. Beer foam stability is expressed as a change of foam height over a certain period. This research aimed to monitor the foam stability of lager beers using image analysis methods on two different types of recordings: RGB and depth videos. Sixteen different commercially available lager beers were subjected to analysis. The automated image analysis method based only on the analysis of RGB video images proved to be inapplicable in real conditions due to problems such as reflection of light through glass, autofocus, and beer lacing/clinging, which make it impossible to accurately detect the actual height of the foam. A solution to this problem, representing a unique contribution, was found by introducing the use of a 3D camera in estimating foam stability. According to the results, automated analysis of depth images obtained from a 3D camera proved to be a suitable, objective, repeatable, reliable, and sufficiently sensitive method for measuring foam stability of lager beers. The applied model proved to be suitable for predicting changes in foam retention of lager beers.


Author(s):  
M.E. Rosenfeld ◽  
C. Karboski ◽  
M.F. Prescott ◽  
P. Goodwin ◽  
R. Ross

Previous research documenting the chronology of the cellular interactions that occur on or below the surface of the endothelium during the initiation and progression of arterial lesions, primarily consisted of descriptive studies. The recent development of lower cost image analysis hardware and software has facilitated the collection of high resolution quantitative data from microscopic images. In this report we present preliminary quantitative data on the sequence of cellular interactions that occur on the endothelium during the initiation of atherosclerosis or vasculitis utilizing digital analysis of images obtained directly from the scanning electron microscope. Segments of both atherosclerotic and normal arteries were obtained from either diet-induced or endogenously (WHHL) hypercholesterolemic rabbits following 1-4 months duration of hypercholesterolemia and age matched control rabbits. Vasculitis was induced in rats following placement of an endotoxin soaked thread adjacent to the adventitial surface of arteries.


2000 ◽  
Vol 10 (2) ◽  
pp. 7-9
Author(s):  
Yaser Natour ◽  
Christine Sapienza ◽  
Mark Schmalz ◽  
Savita Collins

2019 ◽  
Vol 8 (3) ◽  
pp. 11 ◽  
Author(s):  
Gustav Stålhammar ◽  
Thonnie Rose O. See ◽  
Stephen Phillips ◽  
Stefan Seregard ◽  
Hans E. Grossniklaus

2008 ◽  
Vol 14 (2) ◽  
pp. 192-200 ◽  
Author(s):  
Hiromasa Tanaka ◽  
Gojiro Nakagami ◽  
Hiromi Sanada ◽  
Yunita Sari ◽  
Hiroshi Kobayashi ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aristeidis A. Villias ◽  
Stefanos G. Kourtis ◽  
Hercules C. Karkazis ◽  
Gregory L. Polyzois

Abstract Background The replica technique with its modifications (negative replica) has been used for the assessment of marginal fit (MF). However, identification of the boundaries between prosthesis, cement, and abutment is challenging. The recently developed Digital Image Analysis Sequence (DIAS) addresses this limitation. Although DIAS is applicable, its reliability has not yet been proven. The purpose of this study was to verify the DIAS as an acceptable method for the quantitative assessment of MF at cemented crowns, by conducting statistical tests of agreement between different examiners. Methods One hundred fifty-one implant-supported experimental crowns were cemented. Equal negative replicas were produced from the assemblies. Each replica was sectioned in six parts, which were photographed under an optical microscope. From the 906 standardized digital photomicrographs (0.65 μm/pixel), 130 were randomly selected for analysis. DIAS included tracing the profile of the crown and the abutment and marking the margin definition points before cementation. Next, the traced and marked outlines were superimposed on each digital image, highlighting the components’ boundaries and enabling MF measurements. One researcher ran the analysis twice and three others once, independently. Five groups of 130 measurements were formed. Intra- and interobserver reliability was evaluated with intraclass correlation coefficient (ICC). Agreement was estimated with the standard error of measurement (SEM), the smallest detectable change at the 95% confidence level (SDC95%), and the Bland and Altman method of limits of agreement (LoA). Results Measured MF ranged between 22.83 and 286.58 pixels. Both the intra- and interobserver reliability were excellent, ICC = 1 at 95% confidence level. The intra- and interobserver SEM and SDC95% were less than 1 and 3 pixels, respectively. The Bland–Altman analysis presented graphically high level of agreement between the mean measurement of the first observer and each of the three other observers’ measurements. Differences between observers were normally distributed. In all three cases, the mean difference was less than 1 pixel and within ± 3 pixels LoA laid at least 95% of differences. T tests of the differences did not reveal any fixed bias (P > .05, not significant). Conclusion The DIAS is an objective and reliable method able to detect and quantify MF at ranges observed in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document