scholarly journals Enabling the Secure Use of Dynamic Identity for the Internet of Things—Using the Secure Remote Update Protocol (SRUP)

2020 ◽  
Vol 12 (8) ◽  
pp. 138
Author(s):  
Andrew John Poulter ◽  
Steven J. Ossont ◽  
Simon J. Cox

This paper examines dynamic identity, as it pertains to the Internet of Things (IoT), and explores the practical implementation of a mitigation technique for some of the key weaknesses of a conventional dynamic identity model. This paper explores human-centric and machine-based observer approaches for confirming device identity, permitting automated identity confirmation for deployed systems. It also assesses the advantages of dynamic identity in the context of identity revocation permitting secure change of ownership for IoT devices. The paper explores use-cases for human and machine-based observation for authentication of device identity when devices join a Command and Control(C2) network, and considers the relative merits for these two approaches for different types of system.

Author(s):  
Andrew John Poulter ◽  
Steven J. Ossont ◽  
Simon J. Cox

This paper examines dynamic identity, as it pertains to the IoT; and explores the practical implementation of a mitigation to some of the key weaknesses of a conventional dynamic identity model. This paper explores human-centric and machine-based observer approaches for confirming device identity, permitting automated identity confirmation for deployed systems. It also assesses the advantages of dynamic identity in the context of identity revocation permitting secure change of ownership for IoT devices. The paper explores use-cases for human and machine-based observation for authentication of device identity when devices join a C2 network, and considers the relative merits for these two approaches for different types of system.


Author(s):  
Keyurbhai Arvindbhai Jani ◽  
Nirbhay Chaubey

The Internet of Things (IoT) connects different IoT smart objects around people to make their life easier by connecting them with the internet, which leads IoT environments vulnerable to many attacks. This chapter has few main objectives: to understand basics of IoT; different types of attacks possible in IoT; and prevention steps to secure IoT environment at some extent. Therefore, this chapter is mainly divided into three parts. In first part discusses IoT devices and application of it; the second part is about cyber-attacks possible on IoT environments; and in the third part is discussed prevention and recommendation steps to avoid damage from different attacks.


Author(s):  
Tanishka and Prof. Shikha Gupta

The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Internet of Things (IoT) is rapidly gaining momentum in the scenario of telecommunications. Conventional networks allow for interactivity and data exchange, but these networks have not been designed for the new features and functions of IoT devices. In this paper, an algorithm is proposed to share common recourse among Things, that is, between different types of smart appliances. . Purpose is to analyze deeper the cases separating the network and IoT layout, giving a deeper explanation of the purpose of the simulations, presenting all the information needed to utilize the exercises but also giving suggestion how to expand the exercises further. This implementation can be implemented effectively using package tracking software that includes IoT functions to control and simulate a smart home. IoT technology can be applied to many real life issues, such as: homework, treatment, campus, office, etc.


Author(s):  
Alper Kamil Demir ◽  
Shahid Alam

Internet of things (IoT) has revolutionized digital transformation and is present in every sector including transportation, energy, retail, healthcare, agriculture, etc. While stepping into the new digital transformation, these sectors must contemplate the risks involved. The new wave of cyberattacks against IoT is posing a severe impediment in adopting this leading-edge technology. Artificial intelligence (AI) is playing a key role in preventing and mitigating some of the effects of these cyberattacks. This chapter discusses different types of threats and attacks against IoT devices and how AI is enabling the detection and prevention of these cyberattacks. It also presents some challenges faced by AI-enabled detection and prevention and provides some solutions and recommendations to these challenges. The authors believe that this chapter provides a favorable basis for the readers who intend to know more about AI-enabled technologies to detect and prevent cyberattacks against IoT and the motivation to advance the current research in this area.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Clinton Fernandes ◽  
Vijay Sivaraman

This article examines the implications of selected aspects of the Telecommunications (Interception and Access) Amendment (Data Retention) Act 2015, which was passed by the Australian Parliament in March 2015. It shows how the new law has strengthened protections for privacy. However, focusing on the investigatory implications, it shows how the law provides a tactical advantage to investigators who pursue whistleblowers and investigative journalists. The article exposes an apparent discrepancy in the way ‘journalist’ is defined across different pieces of legislation. It argues that although legislators’ interest has been overwhelmingly focused on communications data, the explosion of data generated by the so-called Internet-of-Things (IoT) is as important or more. It shows how the sensors in selected IoT devices lead to a loss of user control and will enable non-stop, involuntary and ubiquitous monitoring of individuals. It suggests that the law will need to be amended further once legislators and investigators’ knowledge of the potential of IoT increases. 


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Yingying Hu ◽  
Zhongyang Li

Against the background of the growing development of the Internet of Things, this article conducts research on more efficient methods for controlling the interconnection of all things, and proposes that smart devices use the same operating platform, and the human-computer interface presents universal modular controls for manipulation, it can satisfy the requirement that one device controls several different types of controlled device simultaneously. At the same time, the interactive method uses the controlled device to actively submit control content to the control device, and discusses the human-computer interactive control method applicable to the Internet of Everything, and strives to achieve a convenient and easy-to-use human-computer control experience.


Author(s):  
Sarita Tripathy ◽  
Shaswati Patra

The huge number of items associated with web is known as the internet of things. It is associated with worldwide data consisting of various components and different types of gadgets, sensors, and software, and a large variety of other instruments. A large number of applications that are required in the field of agriculture should implement methods that should be realistic and reliable. Precision agriculture practices in farming are more efficient than traditional farming techniques. Precision farming simultaneously analyzes data along with generating it by the use of sensors. The application areas include tracking of farm vehicles, monitoring of the livestock, observation of field, and monitoring of storage. This type of system is already being accepted and adopted in many countries. The modern method of smart farming has started utilizing the IoT for better and faster yield of crops. This chapter gives a review of the various IoT techniques used in smart farming.


Sign in / Sign up

Export Citation Format

Share Document