scholarly journals Time-Dependent Wave-Structure Interaction Revisited: Thermo-Piezoelectric Scatterers

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 101
Author(s):  
George C. Hsiao ◽  
Tonatiuh Sánchez-Vizuet

In this paper, we are concerned with a time-dependent transmission problem for a thermo-piezoelectric elastic body that is immersed in a compressible fluid. It is shown that the problem can be treated by the boundary-field equation method, provided that an appropriate scaling factor is employed. As usual, based on estimates for solutions in the Laplace-transformed domain, we may obtain properties of corresponding solutions in the time-domain without having to perform the inversion of the Laplace-domain solutions.

2014 ◽  
Author(s):  
David Jia ◽  
Madhusuden Agrawal ◽  
Jim Malachowski

This paper is a continuation of our previous paper [1] (OMAE2013-11569) where we demonstrated a state-of-the-art methodology for predicting the motions and loads of subsea equipment and structures during offshore operations basing on time domain simulations of subsea equipment and structures. Instead of relying on simplified equations or empirical formulations to calculate and estimate the hydrodynamics coefficients, or using steady-state CFD simulation on a stationary equipment and structure to predict drag and added masses on submerged structures in traditional approaches, this methodology couples the transient CFD with diffraction analysis. The time domain diffraction simulation is coupled with multiphase CFD simulation of subsea equipment and structures in waves. Transient CFD model with rigid body motion for the equipment and structure calculates added masses, forces and moments on the equipment and structure for diffraction analysis, while diffraction analysis calculates linear and angular velocities for CFD simulation. In this paper, parametric studies are performed to investigate effect of wavelength, wave amplitude and wave current on the motion of a hollow cylinder in waves. The results of the parametric studies in this paper show wave-structure interaction of a hollow cylinder in waves, and the effect of waves and current on the motion of the cylinder and the associated forces. The results provide better understanding of structure motion and associated forces in waves using this coupled methodology. The coupled methodology eliminates the inaccuracy inherited from assumed or calculated hydrodynamic properties that are obtained by using simplified equations or empirical formulations [2], or by using steady-state CFD analyses in traditional decoupled approaches. The results show that the coupled physics of wave and cylinder motion is captured by using this methodology, otherwise is not captured by traditional approaches. This coupled methodology has potential applications in analyses of the motions of subsea equipment and structures in wave during offshore operations.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
S. L. Han ◽  
Takeshi Kinoshita

The determination of an external force is a very important task for the purpose of control, monitoring, and analysis of damages on structural system. This paper studies a stochastic inverse method that can be used for determining external forces acting on a nonlinear vibrating system. For the purpose of estimation, a stochastic inverse function is formulated to link an unknown external force to an observable quantity. The external force is then estimated from measurements of dynamic responses through the formulated stochastic inverse model. The applicability of the proposed method was verified with numerical examples and laboratory tests concerning the wave-structure interaction problem. The results showed that the proposed method is reliable to estimate the external force acting on a nonlinear system.


Author(s):  
Harry B. Bingham ◽  
Allan P. Engsig-Karup

This contribution presents our recent progress on developing an efficient solution for fully nonlinear wave-structure interaction. The approach is to solve directly the three-dimensional (3D) potential flow problem. The time evolution of the wave field is captured by integrating the free-surface boundary conditions using a fourth-order Runge-Kutta scheme. A coordinate-transformation is employed to obtain a time-constant spatial computational domain which is discretized using arbitrary-order finite difference schemes on a grid with one stretching in each coordinate direction. The resultant linear system of equations is solved by the GMRES iterative method, preconditioned using a multigrid solution to the linearized, lowest-order version of the matrix. The computational effort and required memory use are shown to scale linearly with increasing problem size (total number of grid points). Preliminary examples of nonlinear wave interaction with variable bottom bathymetry and simple bottom mounted structures are given.


2018 ◽  
Vol 83 ◽  
pp. 386-412 ◽  
Author(s):  
Siming Zheng ◽  
Yongliang Zhang ◽  
Gregorio Iglesias

2021 ◽  
Author(s):  
Decao Yin

Abstract Deepwater steel lazy wave risers (SLWR) subject to vessel motion will be exposed to time-varying oscillatory flow, vortices could be generated and the cyclic vortex shedding force causes the structure vibrate, such fluid-structure interaction is called vortex-induced vibrations (VIV). To investigate VIV on a riser with non-linear structures under vessel motion and oscillatory flows, time domain approaches are needed. In this study, a time-domain approach is used to simulate a full-scale SLWR. Two cases with simplified riser top motions are simulated numerically. By using default input parameters to the time domain approach, the key oscillatory flow induced VIV response characteristics such as response frequency, curvature and displacements are examined and discussed. More accurate VIV prediction could be achieved by using realistic hydrodynamic inputs into the time domain model.


Sign in / Sign up

Export Citation Format

Share Document