scholarly journals Analysis of Carleman Linearization of Lattice Boltzmann

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 24
Author(s):  
Wael Itani ◽  
Sauro Succi

We explore the Carleman linearization of the collision term of the lattice Boltzmann formulation, as a first step towards formulating a quantum lattice Boltzmann algorithm. Specifically, we deal with the case of a single, incompressible fluid with the Bhatnagar Gross and Krook equilibrium function. Under this assumption, the error in the velocities is proportional to the square of the Mach number. Then, we showcase the Carleman linearization technique for the system under study. We compute an upper bound to the number of variables as a function of the order of the Carleman linearization. We study both collision and streaming steps of the lattice Boltzmann formulation under Carleman linearization. We analytically show why linearizing the collision step sacrifices the exactness of streaming in lattice Boltzmann, while also contributing to the blow up in the number of Carleman variables in the classical algorithm. The error arising from Carleman linearization has been shown analytically and numerically to improve exponentially with the Carleman linearization order. This bodes well for the development of a corresponding quantum computing algorithm based on the Lattice Boltzmann equation.

2007 ◽  
Vol 18 (04) ◽  
pp. 556-565 ◽  
Author(s):  
PAULO CESAR PHILIPPI ◽  
LUIZ ADOLFO HEGELE ◽  
RODRIGO SURMAS ◽  
DIOGO NARDELLI SIEBERT ◽  
LUÍS ORLANDO EMERICH DOS SANTOS

In this work, we present a derivation for the lattice-Boltzmann equation directly from the linearized Boltzmann equation, combining the following main features: multiple relaxation times and thermodynamic consistency in the description of non isothermal compressible flows. The method presented here is based on the discretization of increasingly order kinetic models of the Boltzmann equation. Following a Gross-Jackson procedure, the linearized collision term is developed in Hermite polynomial tensors and the resulting infinite series is diagonalized after a chosen integer N, establishing the order of approximation of the collision term. The velocity space is discretized, in accordance with a quadrature method based on prescribed abscissas (Philippi et al., Phys. Rev E 73, 056702, 2006). The problem of describing the energy transfer is discussed, in relation with the order of approximation of a two relaxation-times lattice Boltzmann model. The velocity-step, temperature-step and the shock tube problems are investigated, adopting lattices with 37, 53 and 81 velocities.


Author(s):  
Sauro Succi

This section of the book revisits a question from the book The Lattice Boltzmann Equation (for fluid dynamics and beyond). This question is: What did we learn through lattice Boltzmann? Did LB make a real difference to our understanding of the physics of fluids and flowing matter in general? Here, the text aims to offer a subjective view, without the presumption of being right. Besides being routinely used for a broad spectrum of complex flow problems, there are, in the opinion expressed in this part of the book, a few precious instances in which LB has made a palpable difference.


2001 ◽  
Vol 10 (12) ◽  
pp. 1103-1105 ◽  
Author(s):  
Feng Shi-de ◽  
Mao Jiang-yu ◽  
Zhang Qiong

Sign in / Sign up

Export Citation Format

Share Document