scholarly journals Microbial Decontamination of Bee Pollen by Direct Ozone Exposure

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2593
Author(s):  
Juan Ramón Cabello ◽  
Salud Serrano ◽  
Inmaculada Rodríguez ◽  
Ana Isabel García-Valcárcel ◽  
María Dolores Hernando ◽  
...  

The bee pollen is a complete and healthy food with important nutritional properties. Usually, bee pollen is consumed dehydrated, but it is possible to market it as fresh frozen pollen, favoring the maintenance of its properties and greatly increasing its palatability, compared to dried pollen. However, fresh frozen pollen maintains a high microbiological load that can include some pathogenic genus to human health. In this work, ozonation combined with drying is applied to reduce the microbiological load. The lowest timing exposure to ozone (30 min) was chosen together with hot-air drying during 15 min to evaluate the shelf-life of treated bee-pollen under cold storage (4 °C), and initial reductions of 3, 1.5, and 1.7 log cycles were obtained for Enterobacteriaceae, mesophilic aerobes, and molds and yeasts counting, respectively. Six weeks after treatment the microbial load was held at a lower level than initially observed in fresh bee-pollen. In addition, ozone treatment did not have a negative impact on the polyphenols evaluated. Likewise, the sensory profile of the bee pollen under different treatments was studied. For all these assays the results have been favorable, so we can say that ozonation of fresh pollen is safe for human consumption, which maintains its polyphenols composition and organoleptically is better valued than dried pollen.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4925
Author(s):  
Antonella Castagna ◽  
Giovanni Benelli ◽  
Giuseppe Conte ◽  
Cristina Sgherri ◽  
Francesca Signorini ◽  
...  

In this study, the effect of different drying processes (freeze-drying (FD), microwave-assisted drying (MWD) and classic hot air drying (HAD)) on the polyphenols, flavonoids, and amino acids content was investigated on bee-collected chestnut, willow and ivy pollen for human consumption. Furthermore, the pollen chemical properties were monitored after three and six months of storage, and then analyzed using a multivariate approach. Chestnut pollen was the richest source of polyphenols, flavonoids, and rutin, while ivy pollen contained the highest amount of total and free amino acids, and total and free proline. Drying and storage affected pollen chemical composition with species-dependent effects. MWD allowed the best retention of flavonoids in chestnut pollen for up to six months of storage. All drying techniques led to a depletion of flavonoids in willow pollen; however, MWD ensured the highest flavonoids content after six months. FD and MWD did not lead to flavonoids depletion in ivy pollen during storage. Additionally, storage did not affect the rutin content, which was highest in FD willow samples after six months. Notably, both FD and MWD techniques are efficient in preserving amino acids-related quality of bee pollen up to six months of storage.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1309
Author(s):  
Muhammad Heikal Ismail ◽  
Hii Ching Lik ◽  
Winny Routray ◽  
Meng Wai Woo

Fresh rice noodle was usually coated in a large amount of oil to avoid stickiness and extend the shelf life. Pre-treatment has been applied to reduce the quantity of oil in rice noodle. In this research, the pre-treatment and temperature effect on the rice noodle quality subjected to hot air drying, heat pump drying, and freeze drying was investigated. Texture, color, oil content, and starch gelatinization of the dried noodle was further evaluated. Results revealed that there were significant differences (p < 0.05%) in texture, color, oil content, and starch gelatinization in rice noodle subjected to pre-treatment. Furthermore, the texture, color, oil content, and starch gelatinization demonstrated a significant difference (p < 0.05%) in freeze drying rather than hot air drying and heat pump drying. The findings indicate that the qualitative features of the dehydrated noodle are synergistic to pretreatment and drying temperature. Despite superior quality shown by freeze drying, the hierarchical scoring has proven that rice noodle undergoing hot air drying at 30 °C to produce comparable quality attributes. The hierarchical scoring can be a useful tool in quality determination for the food industry.


Meat Science ◽  
2021 ◽  
pp. 108638
Author(s):  
Shuo Shi ◽  
Jia Feng ◽  
Geer An ◽  
Baohua Kong ◽  
Hui Wang ◽  
...  

Author(s):  
Kritsada Puangsuwan ◽  
Saysunee Jumrat ◽  
Jirapond Muangprathub ◽  
Teerask Punvichai ◽  
Seppo Karrila ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 598
Author(s):  
Graziana Difonzo ◽  
Antonella Aresta ◽  
Pietro Cotugno ◽  
Roberta Ragni ◽  
Giacomo Squeo ◽  
...  

Olive pomace is a semisolid by-product of olive oil production and represents a valuable source of functional phytocompounds. The valorization of agro-food chain by-products represents a key factor in reducing production costs, providing benefits related to their reuse. On this ground, we herein investigate extraction methods with supercritical carbon dioxide (SC-CO2) of functional phytocompounds from olive pomace samples subjected to two different drying methods, i.e., freeze drying and hot-air drying. Olive pomace was produced using the two most common industrial olive oil production processes, one based on the two-phase (2P) decanter and one based on the three-phase (3P) decanter. Our results show that freeze drying more efficiently preserves phytocompounds such as α-tocopherol, carotenoids, chlorophylls, and polyphenols, whereas hot-air drying does not compromise the β-sitosterol content and the extraction of squalene is not dependent on the drying method used. Moreover, higher amounts of α-tocopherol and polyphenols were extracted from 2P olive pomace, while β-sitosterol, chlorophylls, and carotenoids were more concentrated in 3P olive pomace. Finally, tocopherol and pigment/polyphenol fractions exerted antioxidant activity in vitro and in accelerated oxidative conditions. These results highlight the potential of olive pomace to be upcycled by extracting from it, with green methods, functional phytocompounds for reuse in food and pharmaceutical industries.


Sign in / Sign up

Export Citation Format

Share Document