Effect of Grain Size and Drying Temperature on Drying Characteristics of Soybean (Glycine max) Using Hot Air Drying

2015 ◽  
Vol 44 (11) ◽  
pp. 1700-1707 ◽  
Author(s):  
Hyeon Woo Park ◽  
Won Young Han ◽  
Won Byong Yoon
2016 ◽  
Vol 20 (2) ◽  
pp. 128-134
Author(s):  
Hyeon Woo Park ◽  
◽  
Sun Tae Kim ◽  
Myoung Gun Choung ◽  
Won Young Han ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 101 ◽  
Author(s):  
Senadeera ◽  
Adiletta ◽  
Önal ◽  
Di Matteo ◽  
Russo

Drying characteristics of persimmon, cv. “Rojo Brillante”, slabs were experimentally determined in a hot air convective drier at drying temperatures of 45, 50, 55, 60, and 65 °C at a fixed air velocity of 2.3 m/s. It was observed that the drying temperature affected the drying time, shrinkage, and colour. Four empirical mathematical models namely, Enderson and Pabis, Page, Logarithmic, and Two term, were evaluated in order to deeply understand the drying process (moisture ratio). The Page model described the best representation of the experimental drying data at all investigated temperatures (45, 50, 55, 60, 65 °C). According to the evaluation of the shrinkage models, the Quadratic model provided the best representation of the volumetric shrinkage of persimmons as a function of moisture content. Overall, higher drying temperature (65 °C) improved the colour retention of dried persimmon slabs.


2018 ◽  
Vol 192 ◽  
pp. 03061
Author(s):  
Pattawee Wutthigarn ◽  
Jeerayut Hongwiangjan ◽  
Jiraporn Sripinyowanich Jongyingcharoen

In this study, the effect of drying temperature (50-110°C) on hot air drying characteristics of coconut residue was investigated. The drying time and drying rate (DR) were in the ranges of 540-100 min and 0.0048-0.0182 g water/g dry matter·min at the drying temperature of 50-110°C, respectively. Six drying models (Lewis, Page, Henderson and Pabis, Logarithmic, Midilli et al, and linear-plus-exponential model) were used to determine the change in moisture ratio (MR) with drying time. The linear-plus-exponential model provided best fitting of the predicted MR to the experimental MR with the highest average R2 of 0.9985 and the lowest RMSE of 0.01463. The variation of drying temperature with the constants and coefficient of the model was polynomial type. The generalized linear-plus-exponential model as a function of drying temperature gave best result of prediction of MR with the R2 of 0.9709.


Author(s):  
Guangyue Ren ◽  
◽  
Ledao Zhang ◽  
Fanlian Zeng ◽  
Yebei Li ◽  
...  

2018 ◽  
Vol 192 ◽  
pp. 03023
Author(s):  
Natthacha Chaloeichitratham ◽  
Pornkanya Mawilai ◽  
Thadchapong Pongsuttiyakorn ◽  
Pimpen Pornchalermpong

In this study, the effects of two drying methods: hot-air and freeze drying for Thai green curry paste in a terms of drying time and qualities have been investigated. The hot-air drying was carried out in tray dryer at temperature of 50, 60 and 70 °C. The freeze drying was carried out in freeze dryer at freezing temperature of -20°C, primary drying temperature of -10°C and secondary drying temperature of 50°C. Moisture content, water activity, colour, bulk density, and total phenolic content (TPC) were determined in samples. Freeze dried sample had significantly (p<0.05) lower moisture content, water activity, bulk density, total colour difference and browning index than hot air dried samples. For antioxidant activity, the results showed hot-air drying at 70°C effected highest TPC similar to freeze drying.


2011 ◽  
Vol 17 (4) ◽  
pp. 319-330 ◽  
Author(s):  
R. Pedreschi ◽  
I. Betalleluz-Pallardel ◽  
R. Chirinos ◽  
C. Curotto ◽  
D. Campos

The influence of different cooking regimes such as boiling, oven, microwave and hot-air drying on the retention of total phenolics (TP), total carotenoids (TC) and in vitro antioxidant capacity (AC) for three colored arracacha roots was studied. Continuous losses of TP, TC and AC during the course of the different cooking processes were observed. Boiling at 99.5° C for 20 min turned to be the best method to cook this root due to a high retention of TP, TC and AC in comparison to oven cooking at 200° C for 45 min and microwave cooking at 800 W for 5 min. During boiling, chlorogenic and caffeic acids and derivatives remained relatively stable. The drying temperature was negatively correlated to the residual content of TP and AC for the yellow and cream arracacha roots, but for the cream/purple arracacha variety, blanching preserved the TP and AC. Significant losses in chlorogenic and caffeic acids and derivatives were mainly observed during hot-air drying. These results suggested that TP are responsible to a large extent of the AC displayed by arracacha root during the different evaluated cooking regimes.


Sign in / Sign up

Export Citation Format

Share Document