scholarly journals Mathematical Modelling of Canola Oil Biodegradation and Optimisation of Biosurfactant Production by an Antarctic Bacterial Consortium Using Response Surface Methodology

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2801
Author(s):  
Khadijah Nabilah Mohd Zahri ◽  
Khalilah Abdul Khalil ◽  
Claudio Gomez-Fuentes ◽  
Azham Zulkharnain ◽  
Suriana Sabri ◽  
...  

An Antarctic soil bacterial consortium (reference BS14) was confirmed to biodegrade canola oil, and kinetic studies on this biodegradation were carried out. The purpose of this study was to examine the ability of BS14 to produce biosurfactants during the biodegradation of canola oil. Secondary mathematical equations were chosen for kinetic analyses (Monod, Haldane, Teissier–Edwards, Aiba and Yano models). At the same time, biosurfactant production was confirmed through a preliminary screening test and further optimised using response surface methodology (RSM). Mathematical modelling demonstrated that the best-fitting model was the Haldane model for both waste (WCO) and pure canola oil (PCO) degradation. Kinetic parameters including the maximum degradation rate (μmax) and maximum concentration of substrate tolerated (Sm) were obtained. For WCO degradation these were 0.365 min−1 and 0.308%, respectively, while for PCO they were 0.307 min−1 and 0.591%, respectively. The results of all preliminary screenings for biosurfactants were positive. BS14 was able to produce biosurfactant concentrations of up to 13.44 and 14.06 mg/mL in the presence of WCO and PCO, respectively, after optimisation. The optimum values for each factor were determined using a three-dimensional contour plot generated in a central composite design, where a combination of 0.06% salinity, pH 7.30 and 1.55% initial substrate concentration led to the highest biosurfactant production when using WCO. Using PCO, the highest biosurfactant yield was obtained at 0.13% salinity, pH 7.30 and 1.25% initial substrate concentration. This study could help inform the development of large-scale bioremediation applications, not only for the degradation of canola oil but also of other hydrocarbons in the Antarctic by utilising the biosurfactants produced by BS14.

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Khadijah Nabilah Mohd Zahri ◽  
Azham Zulkharnain ◽  
Claudio Gomez-Fuentes ◽  
Suriana Sabri ◽  
Khalilah Abdul Khalil ◽  
...  

Hydrocarbons can cause pollution to Antarctic terrestrial and aquatic ecosystems, both through accidental release and the discharge of waste cooking oil in grey water. Such pollutants can persist for long periods in cold environments. The native microbial community may play a role in their biodegradation. In this study, using mixed native Antarctic bacterial communities, several environmental factors influencing biodegradation of waste canola oil (WCO) and pure canola oil (PCO) were optimised using established one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The factors include salinity, pH, type of nitrogen and concentration, temperature, yeast extract and initial substrate concentration in OFAT and only the significant factors proceeded for the statistical optimisation through RSM. High concentration of substrate targeted for degradation activity through RSM compared to OFAT method. As for the result, all factors were significant in PBD, while only 4 factors were significant in biodegradation of PCO (pH, nitrogen concentration, yeast extract and initial substrate concentration). Using OFAT, the most effective microbial community examined was able to degrade 94.42% and 86.83% (from an initial concentration of 0.5% (v/v)) of WCO and PCO, respectively, within 7 days. Using RSM, 94.99% and 79.77% degradation of WCO and PCO was achieved in 6 days. The significant interaction for the RSM in biodegradation activity between temperature and WCO concentration in WCO media were exhibited. Meanwhile, in biodegradation of PCO the significant factors were between (1) pH and PCO concentration, (2) nitrogen concentration and yeast extract, (3) nitrogen concentration and PCO concentration. The models for the RSM were validated for both WCO and PCO media and it showed no significant difference between experimental and predicted values. The efficiency of canola oil biodegradation achieved in this study provides support for the development of practical strategies for efficient bioremediation in the Antarctic environment.


Sign in / Sign up

Export Citation Format

Share Document