scholarly journals High Resistant Starch Rice: Variation in Starch Related SNPs, and Functional, and Sensory Properties

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Ming-Hsuan Chen ◽  
Karen Bett-Garber ◽  
Jeanne Lea ◽  
Anna McClung ◽  
Christine Bergman

Human diets containing greater resistant starch (RS) are associated with superior glycemic control. Although high amylose rice has higher RS (29 g/kg to 44 g/kg) than lower amylose content varieties, sensory and processing properties associated with RS have not been evaluated. This study used variants of Waxy and starch synthase II a (SSIIa) genes to divide high amylose (256 g/kg to 284 g/kg) varieties into three haplotypes to examine their effects on RS, RVA parameters, and 14 cooked rice texture properties. RVA characteristics were influenced by both genes with peak and hotpaste viscosity differentiating the three haplotypes. Setback from hotpaste viscosity was the only RVA parameter correlated with RS content across three haplotypes (r = −0.76 to −0.93). Cooked rice texture attributes were impacted more by Waxy than by SSIIa with initial starch coating, roughness, and intact particles differentiating the three haplotypes. Pairwise correlation (r = 0.46) and PCA analyses suggested that roughness was the only texture attribute associated with RS content; while protein content influenced roughness (r = 0.49) and stickiness between grains (r = 0.45). In conclusion, variation exists among genetic haplotypes with high RS for sensory traits that will appeal to diverse consumers across the globe with limited concern for negatively affecting grain processing quality.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1316
Author(s):  
Federica Taddei ◽  
Elena Galassi ◽  
Francesca Nocente ◽  
Laura Gazza

The demand for gluten-free products, including pasta, is increasing and rice pasta accounts for the largest share of this market. Usually, the production of rice pasta requires additives or specific technological processes able to improve its texture, cooking quality, and sensory properties. In this work, two rice cultivars, with different amylose content, were subjected to parboiling, micronization, and flour air fractionation to obtain brown rice pasta, without any supplement but rice itself. In particular, two types of pasta (spaghetti shape) were produced, one from 100% micronized wholemeal, and the other from refined rice flour replaced with 15% of the air-fractionated fine fraction. Regardless of the cultivar, pasta from wholemeal micronized flour showed higher protein and fiber content than refined flour enriched with fine fraction, whereas no differences were revealed in resistant starch and antioxidant capacity. Pasta from the high amylose content genotype showed the highest resistant starch content and the lowest predicted glycemic index along with sensorial characteristics as good as durum semolina pasta in fine fraction enriched pasta. Besides the technological processes, pasta quality was affected the most by the genotype, since pasta obtained from high amylose cv Gladio resulted in the best in terms of technological and sensory quality.


2019 ◽  
Vol 51 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Jun Hyeon Cho ◽  
You Chun Song ◽  
Jong Hee Lee ◽  
Ji Yoon Lee ◽  
Young Bo Son ◽  
...  

2020 ◽  
Author(s):  
Satoko Miura ◽  
Nana Koyama ◽  
Naoko Crofts ◽  
Yuko Hosaka ◽  
Misato Abe ◽  
...  

Abstract Background: Cereals high in resistant starch (RS) are gaining popularity, as their intake is thought to help manage diabetes and prediabetes. Number of patients suffering from diabetes is also increasing in Asian countries where people consume rice as a staple food, hence generation of practically growable high RS rice line has been anticipated. It is known that suppression of starch branching enzyme (BE) IIb increases RS content in cereals. To further increase RS content and for more practical use, we generated a non-transgenic be1 be2b double mutant rice (Oryza sativa) line, which completely lacked both proteins, by crossing a be1 mutant with a be2b mutant. Results: The be1 be2b mutant showed a decrease in intermediate amylopectin chains and an increase in long amylopectin chains compared with be2b. The amylose content of be1 be2b mutant (51.7%) was the highest among all pre-existing non-transgenic rice lines. To understand the effects of chewing cooked rice and cooking rice flour on RS content, RS content of mashed and un-mashed cooked rice as well as raw and gelatinized rice flour were measured using be1 be2b and its parent mutant lines. The RS contents of mashed cooked rice and raw rice flour of be1 be2b mutant (28.4% and 35.1%, respectively) were 3-fold higher than those of be2b mutant. Gel-filtration analyses of starch treated with digestive enzymes showed that the RS in be1 be2b mutant was composed of the degradation products of amylose and long amylopectin chains. Seed weight of be1 be2b mutant was approximately 60% of the wild type and rather heavier than that of be2b mutant. Conclusions: The endosperm starch in be1 be2b double mutant rice were enriched with long amylopectin chains. This led to a great increase in RS content in cooked rice grains and rice flour in be1 be2b compared with be2b single mutant. be1 be2b generated in this study must serve as a good material for an ultra-high RS rice cultivar.


2021 ◽  
Author(s):  
Liqin Hu ◽  
Zhengwu Xiao ◽  
Jiana Chen ◽  
Jialin Cao ◽  
Anas Iqbal ◽  
...  

Abstract Rice varieties high in amylose content have low glycemic and insulin responses. Rice noodles are processed by extrusion from high amylose content rice, which may also have low glycemic and insulin responses. In this study, cooked rice and rice noodles processed from two high amylose content cultivars, Guangluai4 (GL4) and Zhenguiai (ZGA), were chosen for in vitro starch digestion evaluation. Apparent amylose content of cultivars (i.e., GL4-28.4% and ZGA-26.8%) and pasting properties except final viscosity were significantly different between the cultivars. In vitro starch digestion results showed that the glucose production rate in rice noodles was significantly slower than that in cooked rice by 65.7% and 42.0% in GL4 and ZGA, respectively. The main reason for low glucose production in rice noodles was active digestion duration longer in rice noodles than in cooked rice, which reflects the slow release of glucose during starch digestion. The texture of rice noodles in the GL4 and ZGA cultivars is 3 and 2.3 times harder than that of cooked rice, respectively. Thus digestive enzymes can hardly enter the interior of rice noodles for amylolysis. As a result, the digestion time of rice noodles is longer, and the release of glucose during digestion is slower than that of cooked rice. The slower release of glucose during rice noodle digestion may be beneficial for prolonging satiety and reducing food intake. Consequently, eating rice noodles may help in improving or preventing diabetes and obesity over time.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 82
Author(s):  
Tao ◽  
Yu ◽  
Sangeeta ◽  
Gilbert

Cooked high-amylose rices have slower digestibility, giving nutritional benefits, but inferior eating qualities. In this study, Rapid Viscosity Analysis, quantitive descriptive sensory analysis with all panellists from China and Textural Profile Analyser (TPA) have been used to measure rice texture and eating quality of cooked rice. Molecular structural mechanisms for this inferior eating quality are found here using structural analysis by size-exclusion chromatography of both the parent starch and starch leached during cooking. All commonly-accepted sensory attributes of cooked rice were characterized by a trained human panel. Hardness, with the strongest negative correlation with panelist preference, is the dominant but not sole factor determining palatability. Rice with larger amylopectin size can bond more water, thereby have lower hardness value. Meanwhile, hardness is controlled by the amounts of medium and long amylopectin chains and amylose in the starch, and by amylose content and amount of longer amylopectin chains in the leachate. With this, it is concluded for the first time that rice containing 19~ 25% amylose content are most preferred by the panel. Meantime, it is showed that breakdown viscosity and swelling power of native rice flour can be and should be used as indicators for predicting rice eating quality. This gives knowledge and understanding of the molecular structural characteristics of starch controlling cooked-rice preference: not just high amylose but also other aspects of molecular structure. This can help rice breeders to target starch-synthesis genes to select slowly digested (healthier) rices with acceptable palatability.


2016 ◽  
Vol 113 (45) ◽  
pp. 12844-12849 ◽  
Author(s):  
Hongju Zhou ◽  
Lijun Wang ◽  
Guifu Liu ◽  
Xiangbing Meng ◽  
Yanhui Jing ◽  
...  

Changes in human lifestyle and food consumption have resulted in a large increase in the incidence of type-2 diabetes, obesity, and colon disease, especially in Asia. These conditions are a growing threat to human health, but consumption of foods high in resistant starch (RS) can potentially reduce their incidence. Strategies to increase RS in rice are limited by a lack of knowledge of its molecular basis. Through map-based cloning of a RS locus in indica rice, we have identified a defective soluble starch synthase gene (SSIIIa) responsible for RS production and further showed that RS production is dependent on the high expression of the Waxya (Wxa) allele, which is prevalent in indica varieties. The resulting RS has modified granule structure; high amylose, lipid, and amylose–lipid complex; and altered physicochemical properties. This discovery provides an opportunity to increase RS content of cooked rice, especially in the indica varieties, which predominates in southern Asia.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Satoko Miura ◽  
Nana Koyama ◽  
Naoko Crofts ◽  
Yuko Hosaka ◽  
Misato Abe ◽  
...  

Abstract Background Cereals high in resistant starch (RS) are gaining popularity, as their intake is thought to help manage diabetes and prediabetes. Number of patients suffering from diabetes is also increasing in Asian countries where people consume rice as a staple food, hence generation of practically growable high RS rice line has been anticipated. It is known that suppression of starch branching enzyme (BE) IIb increases RS content in cereals. To further increase RS content and for more practical use, we generated a non-transgenic be1 be2b double mutant rice (Oryza sativa) line, which completely lacked both proteins, by crossing a be1 mutant with a be2b mutant. Results The be1 be2b mutant showed a decrease in intermediate amylopectin chains and an increase in long amylopectin chains compared with be2b. The amylose content of be1 be2b mutant (51.7%) was the highest among all pre-existing non-transgenic rice lines. To understand the effects of chewing cooked rice and cooking rice flour on RS content, RS content of mashed and un-mashed cooked rice as well as raw and gelatinized rice flour were measured using be1 be2b and its parent mutant lines. The RS contents of mashed cooked rice and raw rice flour of be1 be2b mutant (28.4% and 35.1%, respectively) were 3-fold higher than those of be2b mutant. Gel-filtration analyses of starch treated with digestive enzymes showed that the RS in be1 be2b mutant was composed of the degradation products of amylose and long amylopectin chains. Seed weight of be1 be2b mutant was approximately 60% of the wild type and rather heavier than that of be2b mutant. Conclusions The endosperm starch in be1 be2b double mutant rice were enriched with long amylopectin chains. This led to a great increase in RS content in cooked rice grains and rice flour in be1 be2b compared with be2b single mutant. be1 be2b generated in this study must serve as a good material for an ultra-high RS rice cultivar.


Author(s):  
Dương Thanh Thủy ◽  
Taiichiro Ookawa

The sensory and functional properties of rice are predominantly associated with its amylose content. Granule-bound starch synthase (GBSS) encoded by the Waxy (Wx) gene determines the synthesis of amylose, while starch branching enzymes encoded by Sbe genes are involved in the formation of amylopectin. Some studies have demonstrated that Wx gene is the major controller of amylose content but there are one or more modifying genes affecting the amylose content. Three markers,  microsatellite, Single – nucleotide – polymorphism (G/T SNP) in Wx gene and Single – nucleotide – polymorphism (T/C SNP) in Sbe1 gene, were tested for their association with amylose content using sixty-nine  rice accessions from twenty countries. Of the three markers, two markers in Wx gene are significantly associated with amylose content. The combination of two markers in Wx gene (haplotypes) explained 83.8% of the variation in amylose content and discriminated the three market classes of glutinous, low, intermediate and high amylose content of rice from each other. And T/C SNP in Sbe1 locus was not a suitable marker for amylose content. Keywords: marker, amylose content, Waxy gene.


Sign in / Sign up

Export Citation Format

Share Document