scholarly journals The Bactericidal Effect of a Combination of Food-Grade Compounds and their Application as Alternative Antibacterial Agents for Food Contact Surfaces

Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 59 ◽  
Author(s):  
Kyung Min Park ◽  
Sung-Geon Yoon ◽  
Tae-Ho Choi ◽  
Hyun Jung Kim ◽  
Kee Jai Park ◽  
...  

Chemical antibacterials are widely used to control microbial growth but have raised concerns about health risks. It is necessary to find alternative, non-toxic antibacterial agents for the inhibition of pathogens in foods or food contact surfaces. To develop a non-toxic and “green” food-grade alternative to chemical sanitizers, we formulated a multicomponent antibacterial mixture containing Rosmarinus officinalis L., Camellia sinensis L., citric acid, and ε-polylysine and evaluated its bactericidal efficacy against Staphylococcus aureus, Escherichia coli, Bacillus cereus, Salmonella Enteritidis, and Listeria monocytogenes on food contact surfaces. A combination of the agents allowed their use at levels lower than were effective when tested individually. At a concentration of 0.25%, the multicomponent mixture reduced viable cell count by more than 5 log CFU/area, with complete inactivation 24 h after treatment. The inhibitory efficacy of the chemical antibacterial agent (sodium hypochlorite, 200 ppm) and the multicomponent antibacterial mixture (0.25%) on utensil surfaces against S. aureus, E. coli, S. Enteritidis, and L. monocytogenes were similar, but the multicomponent system was more effective against B. cereus than sodium hypochlorite, with an immediate 99.999% reduction on knife and plastic basket surfaces, respectively, and within 2 h on cutting board surfaces after treatment. A combination of these food-grade antibacterials could be a useful strategy for inhibition of bacteria on food contact surfaces while allowing use of lower concentrations of its components than are effective individually. This multicomponent food-grade antibacterial mixture may be a suitable “green” alternative to chemical sanitizers.

2013 ◽  
Vol 76 (4) ◽  
pp. 662-667 ◽  
Author(s):  
M. CORCORAN ◽  
D. MORRIS ◽  
N. DE LAPPE ◽  
J. O'CONNOR ◽  
P. LALOR ◽  
...  

Foodborne pathogens can attach to, and survive on, food contact surfaces for long periods by forming a biofilm. Salmonella enterica is the second most common cause of foodborne illness in Ireland. The ability of S. enterica to form a biofilm could contribute to its persistence in food production areas, leading to cross-contamination of products and surfaces. Arising from a large foodborne outbreak of S. enterica serovar Agona associated with a food manufacturing environment, a hypothesis was formulated that the associated Salmonella Agona strain had an enhanced ability to form a biofilm relative to other S. enterica. To investigate this hypothesis, 12 strains of S. enterica, encompassing three S. enterica serovars, were assessed for the ability to form a biofilm on multiple food contact surfaces. All isolates formed a biofilm on the contact surfaces, and there was no consistent trend for the Salmonella Agona outbreak strain to produce a denser biofilm compared with other strains of Salmonella Agona or Salmonella Typhimurium. However, Salmonella Enteritidis biofilm was considerably less dense than Salmonella Typhimurium and Salmonella Agona biofilms. Biofilm density was greater on tile than on concrete, polycarbonate, stainless steel, or glass.


1984 ◽  
Vol 47 (10) ◽  
pp. 762-764
Author(s):  
H. E. HUFF ◽  
M. E. ANDERSON ◽  
R. T. MARSHALL

The objective of this research was to evaluate a method for quantitatively removing pork fat and blood plasma from different food contact surfaces - glass, stainless steel, plastic and food grade belting. Two studies were conducted. In the first study, a mass balance procedure was used to determine whether the developed method could remove virtually all the fat or protein placed on stainless steel and glass. In the second study, a gravimetric method was used to verify that the amount of fat on test strips could be harvested and quantified as residue. A recovery rate of from 98% or 100% was achieved for the different types of food contact surfaces.


Biofouling ◽  
2018 ◽  
Vol 34 (7) ◽  
pp. 753-768 ◽  
Author(s):  
Catarina Milho ◽  
Maria Daniela Silva ◽  
Luís Melo ◽  
Sílvio Santos ◽  
Joana Azeredo ◽  
...  

2019 ◽  
Vol 83 (1) ◽  
pp. 13-16 ◽  
Author(s):  
SANG-SOON KIM ◽  
SOO-HWAN KIM ◽  
SANG-HYUN PARK ◽  
DONG-HYUN KANG

ABSTRACT Bacillus cereus spore contamination on food contact surfaces is of great concern in the food industry. Thus, in the present study, superheated steam (SHS) was used alone or combined with UV-C irradiation for inactivation of B. cereus spores inoculated on stainless steel coupons. Temperatures higher than 250°C were needed to effectively inactivate B. cereus spores by SHS treatment alone, while a synergistic bactericidal effect resulted from the sequential treatment of SHS before or after UV-C irradiation. The increased dipicolinic acid ratio obtained by the combined treatment had a significant role in the synergistic bactericidal effect. Therefore, the combined treatment of SHS and UV-C could be used effectively to inactivate B. cereus on stainless steel. It is recommended to use hurdle technology with reduced energy consumption to ensure microbiological safety on food contact surfaces. HIGHLIGHTS


2008 ◽  
Vol 8 (2) ◽  
pp. 502-505 ◽  
Author(s):  
Mahdavi Manijeh ◽  
Jalali Mohammad ◽  
Kasra Kermanshahi Roha

Author(s):  
Jan Kobylarz ◽  
BCIT School of Health Sciences, Environmental Health ◽  
Helen Heacock ◽  
Fred Shaw

  Background: Gastroenteritis is largely under reported across Canada. It is estimated that one reported case represents on average 313 cases. In addition, improper cleaning is one of the top ten reported causes of food borne illness. Sanitization is important to reduce the number of pathogenic microorganisms present on food contact surfaces to a safe level. Correct concentrations of sodium hypochlorite are to be prepared and used within the range of 100ppm – 200ppm on food contact surfaces. The purpose of this study was to evaluate the rate of degradation of sodium hypochlorite in spray bottles to assess if these solutions need to be prepared fresh daily to achieve efficacy. Two variables seen within a food service establishment were chosen to evaluate the rate of degradation, temperature and ambient light. Method: Room temperature (20˚C), 35˚C and ambient light exposure were tested to evaluate their effect on the degradation of free chlorine in spray bottles over time in days. The experiment was preformed by setting up 3 individual spray bottles at 20˚C with no light, 20˚C with ambient light and 35˚C with no light. The sodium hypochlorite was then sampled and recorded periodically three times a week over a 15-day period to determine the stability of the chorine solutions prepared at around 200ppm. Results: In the order of spray bottles tested, 20˚C no light, 20˚C ambient light and 35˚C no light, a correlation coefficient of -0.3027, -0.8235 and -0.8169 were recorded. In addition, the following test spray bottles held a r-squared value of 0.0916, 0.6781 and 0.6674. A p-value of 0.5094, 0.0249 and 0.0249 were also assessed, with a corresponding power of 8.99%, 73.74% and 71.75%. Conclusions: By calculating the linear regression formula, it was concluded that chlorine solution in spray bottles do not need to be prepared fresh daily. For 200ppm 20˚C no light, 200ppm 20˚C ambient light and 200ppm 35˚C no light, at days 128, 67 and 45, the estimated concentration of sodium hypochlorite will be at the minimum requirement of 100ppm respectively.  


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Niels Demaître ◽  
Geertrui Rasschaert ◽  
Lieven De Zutter ◽  
Annemie Geeraerd ◽  
Koen De Reu

The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.


Sign in / Sign up

Export Citation Format

Share Document