Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces

Food Control ◽  
2021 ◽  
pp. 108796
Author(s):  
Md Iqbal Hossain ◽  
Md Furkanur Rahaman Mizan ◽  
Sazzad Hossen Toushik ◽  
Pantu Kumar Roy ◽  
Iqbal Kabir Jahid ◽  
...  
Food Control ◽  
2018 ◽  
Vol 92 ◽  
pp. 240-248 ◽  
Author(s):  
C. Ripolles-Avila ◽  
A.S. Hascoët ◽  
A.E. Guerrero-Navarro ◽  
J.J. Rodríguez-Jerez

1984 ◽  
Vol 47 (10) ◽  
pp. 762-764
Author(s):  
H. E. HUFF ◽  
M. E. ANDERSON ◽  
R. T. MARSHALL

The objective of this research was to evaluate a method for quantitatively removing pork fat and blood plasma from different food contact surfaces - glass, stainless steel, plastic and food grade belting. Two studies were conducted. In the first study, a mass balance procedure was used to determine whether the developed method could remove virtually all the fat or protein placed on stainless steel and glass. In the second study, a gravimetric method was used to verify that the amount of fat on test strips could be harvested and quantified as residue. A recovery rate of from 98% or 100% was achieved for the different types of food contact surfaces.


2013 ◽  
Vol 76 (7) ◽  
pp. 1279-1282 ◽  
Author(s):  
WALID Q. ALALI ◽  
DONALD W. SCHAFFNER

The objective of this study was to evaluate the relationship between prevalence of Listeria monocytogenes as an outcome and Listeria spp. as an explanatory variable by food products, food contact surfaces, and nonfood contact surfaces in seafood processing plants by using peer-reviewed published data. Nine sets of prevalence data of L. monocytogenes and Listeria spp. were collected from published studies and used for the analyses. Based on our analysis, the relationship between L. monocytogenes prevalence and Listeria spp. prevalence in food products (incoming raw materials and finish products) was significant (P = 0.04) with (low) R2 = 0.36. Furthermore, Listeria spp. were not a good indicator for L. monocytogenes when testing food contact surfaces (R2= 0.10). Listeria spp. were a good indicator for L. monocytogenes only on nonfood contact surfaces (R2= 0.90). On the other hand, the presence of Listeria spp. on food contact surfaces (R2= 0.002) and nonfood contact surfaces (R2= 0.03) was not a good indicator for L. monocytogenes presence in food products. In general, prevalence of Listeria spp. does not seem to be a good indicator for L. monocytogenes prevalence in seafood processing plants.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 59 ◽  
Author(s):  
Kyung Min Park ◽  
Sung-Geon Yoon ◽  
Tae-Ho Choi ◽  
Hyun Jung Kim ◽  
Kee Jai Park ◽  
...  

Chemical antibacterials are widely used to control microbial growth but have raised concerns about health risks. It is necessary to find alternative, non-toxic antibacterial agents for the inhibition of pathogens in foods or food contact surfaces. To develop a non-toxic and “green” food-grade alternative to chemical sanitizers, we formulated a multicomponent antibacterial mixture containing Rosmarinus officinalis L., Camellia sinensis L., citric acid, and ε-polylysine and evaluated its bactericidal efficacy against Staphylococcus aureus, Escherichia coli, Bacillus cereus, Salmonella Enteritidis, and Listeria monocytogenes on food contact surfaces. A combination of the agents allowed their use at levels lower than were effective when tested individually. At a concentration of 0.25%, the multicomponent mixture reduced viable cell count by more than 5 log CFU/area, with complete inactivation 24 h after treatment. The inhibitory efficacy of the chemical antibacterial agent (sodium hypochlorite, 200 ppm) and the multicomponent antibacterial mixture (0.25%) on utensil surfaces against S. aureus, E. coli, S. Enteritidis, and L. monocytogenes were similar, but the multicomponent system was more effective against B. cereus than sodium hypochlorite, with an immediate 99.999% reduction on knife and plastic basket surfaces, respectively, and within 2 h on cutting board surfaces after treatment. A combination of these food-grade antibacterials could be a useful strategy for inhibition of bacteria on food contact surfaces while allowing use of lower concentrations of its components than are effective individually. This multicomponent food-grade antibacterial mixture may be a suitable “green” alternative to chemical sanitizers.


Sign in / Sign up

Export Citation Format

Share Document