scholarly journals Canjiqueira Fruit: Are We Losing the Best of It?

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 521
Author(s):  
Daniela G. Arakaki ◽  
Vanessa Samúdio dos Santos ◽  
Elaine Pádua de Melo ◽  
Hugo Pereira ◽  
Priscila Silva Figueiredo ◽  
...  

Fruits and byproducts are valuable sources of nutrients and bioactive compounds, which are associated with a decreased risk of developing several diseases, such as cancer, inflammation, cardiovascular diseases, and Alzheimer’s. The fruits of canjiqueira (Byrsonima cydoniifolia) are already exploited as a food resource, while the seeds are discarded. This study aimed at showing the potential of the whole fruit of canjiqueira. Elemental characterization was performed on ICP OES, while thermal stability was assessed on thermogravimetry. The determination of the fatty acid profile was carried out on gas chromatography and bioactive compound identification using liquid chromatography and mass spectrometry. Results show that both parts of canjiqueira fruit are a source of various minerals, such as Ca, Cu, Fe, K, Mg, and Mn while the seed only is a good source for Zn. Oleic and linoleic acids are the main compounds in pulp and seed. The thermal stability of seed oil is superior to pulp oil, while piceatannol concentration is higher in seed than pulp. All parts of canjiqueira fruit may be used as a strategy to address nutrition issues and are valuable ingredients to prospective food products.

2021 ◽  
Vol 15 (2) ◽  
pp. 271-277
Author(s):  
G. M. Nazin ◽  
B. L. Korsunskiy

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4715
Author(s):  
Ákos Buckó ◽  
Zsolt Kása ◽  
Márton Szabados ◽  
Bence Kutus ◽  
Ottó Berkesi ◽  
...  

In the present work, the structure and thermal stability of Ca–Al mixed-metal compounds, relevant in the Bayer process as intermediates, have been investigated. X-ray diffraction (XRD) measurements revealed the amorphous morphology of the compounds, which was corroborated by SEM-EDX measurements. The results of ICP-OES and UV-Vis experiments suggested the formation of three possible ternary calcium aluminum heptagluconate (Ca-Al-Hpgl) compounds, with the formulae of CaAlHpgl(OH)40, Ca2AlHpgl2(OH)50 and Ca3Al2Hpgl3(OH)90. Additional IR and Raman experiments revealed the centrally symmetric arrangement of heptagluconate around the metal ion. The increased thermal stability was demonstrated by thermal analysis of the solids and confirmed our findings.


1983 ◽  
Vol 19 (8) ◽  
pp. 412-414
Author(s):  
N. A. Kudryavtseva ◽  
I. A. Mikhailov ◽  
E. M. Nikonorov ◽  
L. A. Rakova

2012 ◽  
Vol 36 (1) ◽  
pp. 54-58 ◽  
Author(s):  
Imededdine Arbi Nehdi ◽  
Hassen Sbihi ◽  
Chin Ping Tan ◽  
Hedi Zarrouk ◽  
Mutassim Ibrahim Khalil ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Iwona Zarzyka

The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams’ properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen.


1975 ◽  
Vol 147 (3) ◽  
pp. 593-603 ◽  
Author(s):  
D L Morris ◽  
J Campbell ◽  
W E Hornby

Triethyloxonium tetrafluoroborate was used to O-alkylate nylon-tube thus producing the imidate salt of the nylon which was further made to react with 1,6-diaminohexane. 2. Hexokinase (EC 2.7.1.1) and glucose 6-phosphate dehydrogenase (EC 1.1.1.49) were immobilized on the amino-substituted nylon tube through glutaraldeyde and bisimidates. 3. The effect of varying the conditions of O-alkylation and the amount of enzyme immobilized on the activity of nylon tube-hexokinase derivatives was determined. 4. The effect of varying the amount of enzyme immobilized on the activity of nylon-tube-glucose 6-phosphate dehydrogenase derivatives was determined. 5. The thermal stability of nylon-tube-hexokinase and nylon-tube-glucose 6-phosphate dehydrogenase derivatives was studied. 6. Different ratios of hexokinase and glucose 6-phosphate dehydrogenase were co-immobilized on nylon tube, and the rate of conversion of glucose into 6-phosphogluconolactone was compared with the individual activities of the immobilized enzymes. 7. Hexokinase and glucose 6-phosphate dehydrogenase co-immobilized on nylon tube were used in the automated analysis of glucose.


Sign in / Sign up

Export Citation Format

Share Document