scholarly journals Dispersive Transport Described by the Generalized Fick Law with Different Fractional Operators

2020 ◽  
Vol 4 (3) ◽  
pp. 42 ◽  
Author(s):  
Renat T. Sibatov ◽  
HongGuang Sun

The approach based on fractional advection–diffusion equations provides an effective and meaningful tool to describe the dispersive transport of charge carriers in disordered semiconductors. A fractional generalization of Fick’s law containing the Riemann–Liouville fractional derivative is related to the well-known fractional Fokker–Planck equation, and it is consistent with the universal characteristics of dispersive transport observed in the time-of-flight experiment (ToF). In the present paper, we consider the generalized Fick laws containing other forms of fractional time operators with singular and non-singular kernels and find out features of ToF transient currents that can indicate the presence of such fractional dynamics. Solutions of the corresponding fractional Fokker–Planck equations are expressed through solutions of integer-order equation in terms of an integral with the subordinating function. This representation is used to calculate the ToF transient current curves. The physical reasons leading to the considered fractional generalizations are elucidated and discussed.

2016 ◽  
Vol 17 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Xu Sun ◽  
Xiaofan Li ◽  
Yayun Zheng

Marcus stochastic differential equations (SDEs) often are appropriate models for stochastic dynamical systems driven by non-Gaussian Lévy processes and have wide applications in engineering and physical sciences. The probability density of the solution to an SDE offers complete statistical information on the underlying stochastic process. Explicit formula for the Fokker–Planck equation, the governing equation for the probability density, is well-known when the SDE is driven by a Brownian motion. In this paper, we address the open question of finding the Fokker–Planck equations for Marcus SDEs in arbitrary dimensions driven by non-Gaussian Lévy processes. The equations are given in a simple form that facilitates theoretical analysis and numerical computation. Several examples are presented to illustrate how the theoretical results can be applied to obtain Fokker–Planck equations for Marcus SDEs driven by Lévy processes.


2021 ◽  
Vol 27 ◽  
pp. 15
Author(s):  
M. Soledad Aronna ◽  
Fredi Tröltzsch

In this article we study an optimal control problem subject to the Fokker-Planck equation ∂tρ − ν∆ρ − div(ρB[u]) = 0 The control variable u is time-dependent and possibly multidimensional, and the function B depends on the space variable and the control. The cost functional is of tracking type and includes a quadratic regularization term on the control. For this problem, we prove existence of optimal controls and first order necessary conditions. Main emphasis is placed on second order necessary and sufficient conditions.


2020 ◽  
Vol 30 (04) ◽  
pp. 685-725 ◽  
Author(s):  
Giulia Furioli ◽  
Ada Pulvirenti ◽  
Elide Terraneo ◽  
Giuseppe Toscani

We introduce a class of new one-dimensional linear Fokker–Planck-type equations describing the dynamics of the distribution of wealth in a multi-agent society. The equations are obtained, via a standard limiting procedure, by introducing an economically relevant variant to the kinetic model introduced in 2005 by Cordier, Pareschi and Toscani according to previous studies by Bouchaud and Mézard. The steady state of wealth predicted by these new Fokker–Planck equations remains unchanged with respect to the steady state of the original Fokker–Planck equation. However, unlike the original equation, it is proven by a new logarithmic Sobolev inequality with weight and classical entropy methods that the solution converges exponentially fast to equilibrium.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
A. A. Hemeda ◽  
E. E. Eladdad

In this article, we propose the new iterative method and introduce the integral iterative method to solve linear and nonlinear Fokker-Planck equations and some similar equations. The results obtained by the two methods are compared with those obtained by both Adomian decomposition and variational iteration methods. Comparison shows that the two methods are more effective and convenient to use and overcome the difficulties arising in calculating Adomian polynomials and Lagrange multipliers, which means that the considered methods can simply and successfully be applied to a large class of problems.


1997 ◽  
Vol 12 (01) ◽  
pp. 165-170 ◽  
Author(s):  
A. A. Donkov ◽  
A. D. Donkov ◽  
E. I. Grancharova

By employing algebraic techniques we find the exact solutions of the Cauchy problem for two equations, which may be considered as n-dimensional generalization of the famous Fokker–Planck equation. Our approach is a combination of the disentangling techniques of R. Feynman with operational method developed in modern functional analysis in particular in the theory of partial differential equations. Our method may be considered as a generalization of the M. Suzuki method of solving the Fokker–Planck equation.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ravi Shanker Dubey ◽  
Badr Saad T. Alkahtani ◽  
Abdon Atangana

An efficient approach based on homotopy perturbation method by using Sumudu transform is proposed to solve some linear and nonlinear space-time fractional Fokker-Planck equations (FPEs) in closed form. The space and time fractional derivatives are considered in Caputo sense. The homotopy perturbation Sumudu transform method (HPSTM) is a combined form of Sumudu transform, homotopy perturbation method, and He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. Some examples show that the HPSTM is an effective tool for solving many space time fractional partial differential equations.


Author(s):  
Sebastian Vellmer ◽  
Benjamin Lindner

AbstractWe review applications of the Fokker–Planck equation for the description of systems with event trains in computational and cognitive neuroscience. The most prominent example is the spike trains generated by integrate-and-fire neurons when driven by correlated (colored) fluctuations, by adaptation currents and/or by other neurons in a recurrent network. We discuss how for a general Gaussian colored noise and an adaptation current can be incorporated into a multidimensional Fokker–Planck equation by Markovian embedding for systems with a fire-and-reset condition and how in particular the spike-train power spectrum can be determined by this equation. We then review how this framework can be used to determine the self-consistent correlation statistics in a recurrent network in which the colored fluctuations arise from the spike trains of statistically similar neurons. We then turn to the popular drift-diffusion models for binary decisions in cognitive neuroscience and demonstrate that very similar Fokker–Planck equations (with two instead of only one threshold) can be used to study the statistics of sequences of decisions. Specifically, we present a novel two-dimensional model that includes an evidence variable and an expectancy variable that can reproduce salient features of key experiments in sequential decision making.


1968 ◽  
Vol 10 (2) ◽  
pp. 168-174 ◽  
Author(s):  
R. G. Bhandari ◽  
R. E. Sherrer

A one-degree-of-freedom system and a two-degree-of-freedom system containing Dis-placement and velocity dependent nonlinearities subjected to stationary gaussian white noise excitation have been studied by the method of the Fokker-Planck equation. Non-linearities have been represented by suitable polynomials. The Fokker-Planck equations governing the stationary probability density function for these systems have been solved by representing the density function by a multiple series of Hermite polynomials. The constants in the series expansion were determined by Galerkin's method. Analysis is developed for the system containing nonlinearities described by suitable polynomials in velocity and displacement dependent forces. Comparisons were made between series and exact solutions for those special cases for which exact solutions are known.


2020 ◽  
pp. 292-341
Author(s):  
Sandip Tiwari

This chapter explores the evolution of an ensemble of electrons under stimulus, classically and quantum-mechanically. The classical Liouville description is derived, and then reformed to the quantum Liouville equation. The differences between the classical and the quantum-mechanical description are discussed, emphasizing the uncertainty-induced fuzziness in the quantum description. The Fokker-Planck equation is introduced to describe the evolution of ensembles and fluctuations in it that comprise the noise. The Liouville description makes it possible to write the Boltzmann transport equation with scattering. Limits of validity of the relaxation time approximation are discussed for the various scattering possibilities. From this description, conservation equations are derived, and drift and diffusion discussed as an approximation. Brownian motion arising in fast-and-slow events and response are related to the drift and diffusion and to the Langevin and Fokker-Planck equations as probabilistic evolution. This leads to a discussion of Markov processes and the Kolmogorov equation.


Sign in / Sign up

Export Citation Format

Share Document