scholarly journals The eMERLIN and EVN View of FR 0 Radio Galaxies

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 106
Author(s):  
Ranieri D. Baldi ◽  
Gabriele Giovannini ◽  
Alessandro Capetti

We present the results from high-resolution observations carried out with the eMERLIN UK-array and the European VLBI network (EVN) for a sample of 15 FR 0s, i.e., compact core-dominated radio sources associated with nearby early-type galaxies (ETGs), which represent the bulk of the local radio galaxy population. The 5 GHz eMERLIN observations available for five objects exhibit sub-mJy core components and reveal pc-scale twin jets for four out of five FR 0s once the eMERLIN and JVLA archival visibilities data are combined. The 1.66 GHz EVN observations available for 10 FR 0s display one- and two-sided jetted morphologies and compact cores. The pc-scale core emission contributes, on average, to about one tenth of the total extended radio emission, although we noted an increasing core contribution for flat-/inverted-spectrum sources. We found an unprecedented linear correlation between the pc-scale core luminosity (∼1021.3–1023.6 W Hz−1) and [O III] line luminosity, generally considered as proxy of the accretion power, for a large sample of LINER-type radio-loud low-luminosity active nuclei, all hosted in massive ETGs, which include FR 0s and FR Is. This result represents further evidence of a common jet–disc coupling in FR 0s and FR Is, despite then differing in kpc-scale radio structure. For our objects and for other FR 0 samples reported in the literature, we estimated the jet brightness sidedness ratios, which typically range between one and three. This parameter roughly gauges the jet bulk Lorentz factor Γ, which turns out to range from 1 to 2.5 for most of the sample. This corroborates the scenario that FR 0s are characterized by mildly relativistic jets, possibly as a result of lower-spinning black holes (BHs) than the highly spinning BHs of relativistic-jetted radio galaxies, FR Is.

1998 ◽  
Vol 164 ◽  
pp. 85-86 ◽  
Author(s):  
G. Giovannini ◽  
E. Arbizzani ◽  
L. Feretti ◽  
T. Venturi ◽  
W.D. Cotton ◽  
...  

AbstractFrom VLBI observations of 11 FR I radio galaxies we find that: 1. parsec scale jets are relativistic; 2. 3C 264 shows a relativistic jet decelerating moving from the core to the extended lobes; 3. 3C 338 is a source with asymmetric parsec scale structure and morphological changes, implying proper motion on both sides of the source; 4. 1144+35 is an extended low power radio galaxy with an apparent superluminal motion in its parsec scale radio structure.


2021 ◽  
Vol 922 (2) ◽  
pp. 197
Author(s):  
Anna Wójtowicz ◽  
Łukasz Stawarz ◽  
Jerzy Machalski ◽  
Luisa Ostorero

Abstract The dynamical evolution and radiative properties of luminous radio galaxies and quasars of the FR II type, are well understood. As a result, through the use of detailed modeling of the observed radio emission of such sources, one can estimate various physical parameters of the systems, including the density of the ambient medium into which the radio structure evolves. This, however, requires rather comprehensive observational information, i.e., sampling the broadband radio continua of the targets at several frequencies, and imaging their radio structures with high resolution. Such observations are, on the other hand, not always available, especially for high-redshift objects. Here, we analyze the best-fit values of the source physical parameters, derived from extensive modeling of the largest currently available sample of FR II radio sources, for which good-quality multiwavelength radio flux measurements could be collected. In the analyzed data set, we notice a significant and nonobvious correlation between the spectral index of the nonthermal radio emission continuum, and density of the ambient medium. We derive the corresponding correlation parameters, and quantify the intrinsic scatter by means of Bayesian analysis. We propose that the discovered correlation could be used as a cosmological tool to estimate the density of ambient medium for large samples of distant radio galaxies. Our method does not require any detailed modeling of individual sources, and relies on limited observational information, namely, the slope of the radio continuum between the rest-frame frequencies 0.4 and 5 GHz, possibly combined with the total linear size of the radio structure.


1988 ◽  
Vol 129 ◽  
pp. 75-76
Author(s):  
G. Comoretto ◽  
L. Feretti ◽  
G. Giovannini

We present the first results of a statistical study of the milliarcsec structure in a complete sample of radio galaxies. We have selected from the B2 and 3CR samples of galaxies the sources which present, at the VLA or WSRT angular resolution, an unresolved core with a flux density at 5 GHz Sc ≥ 100 mJy. The total sample consists of 30 radio galaxies, 17 from the B2 and 13 from the 3CR catalog. This complete sample covers a range of total radio power at 408 MHz log P = 23.5 – 26.5 W/Hz (low-intermediate luminosity). The radio structure of these sources on the arcsec-arcmin scale is well known, thanks to good dynamic range VLA and/or WSRT maps; a large variety of structures is present in the sample, from classical doubles to head-tail sources; flat, inverted and steep spectrum cores are also present.


2019 ◽  
Vol 488 (2) ◽  
pp. 2701-2721 ◽  
Author(s):  
B Mingo ◽  
J H Croston ◽  
M J Hardcastle ◽  
P N Best ◽  
K J Duncan ◽  
...  

Abstract The relative positions of the high and low surface brightness regions of radio-loud active galaxies in the 3CR sample were found by Fanaroff and Riley to be correlated with their luminosity. We revisit this canonical relationship with a sample of 5805 extended radio-loud active galactic nuclei (AGN) from the LOFAR Two-Metre Sky Survey (LoTSS), compiling the most complete data set of radio-galaxy morphological information obtained to date. We demonstrate that, for this sample, radio luminosity does not reliably predict whether a source is edge-brightened (FRII) or centre-brightened (FRI). We highlight a large population of low-luminosity FRIIs, extending three orders of magnitude below the traditional FR break, and demonstrate that their host galaxies are on average systematically fainter than those of high-luminosity FRIIs and of FRIs matched in luminosity. This result supports the jet power/environment paradigm for the FR break: low-power jets may remain undisrupted and form hotspots in lower mass hosts. We also find substantial populations that appear physically distinct from the traditional FR classes, including candidate restarting sources and ‘hybrids’. We identify 459 bent-tailed sources, which we find to have a significantly higher SDSS cluster association fraction (at z < 0.4) than the general radio-galaxy population, similar to the results of previous work. The complexity of the LoTSS faint, extended radio sources not only demonstrates the need for caution in the automated classification and interpretation of extended sources in modern radio surveys, but also reveals the wealth of morphological information such surveys will provide and its value for advancing our physical understanding of radio-loud AGN.


2021 ◽  
Author(s):  
◽  
Siamak Dehghan

<p>This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg² area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS).  Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies.  It is believed that tailed radio galaxies reside in the dense environments of clusters and groups, and therefore, may be the signatures of overdensities in large-scale structure. To evaluate the idea of using tailed radio galaxies as tracers of dense environments, a systematic study of these sources as a function of density is required. For this reason and by using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS) data, we examined over four deg² area of the ATLAS-CDFS field, which includes the entire CDFS. We present a catalogue of 56 non-linear, extended, and low surface brightness sources including 45 tailed radio galaxies, two relic candidates, and a possible radio halo. We report the detection of the most distant tailed radio galaxy to date, at a redshift of 2.1688. In addition, despite the lack of deep spectroscopic data in the ATLAS field, we find two of the detected tailed radio galaxies are associated with clusters. We find three Head-Tail galaxy candidates in the CDFS field, all of which are located at high redshifts, where the magnitude constraint of our redshift sample prevents any structure detection.  One of the primary objectives of this research is to investigate the association between the morphology of tailed radio galaxies and the physical characteristics of the surrounding environment. In order to understand the role of the variety of factors that influence the radio morphology, we constructed a simple model that generates the overall radio structure of the sources in different habitats. We report the results of the simulation of the wide-angle tail radio galaxy PKS J0334-3900, which shows that both the gravitation interactions and a cluster wind are required to generate the observed radio tails. As a result, we find the morphology of the tailed radio galaxies as an invaluable tool to probe environmental characteristics.  In a supplementary study, we investigate the role of cluster dynamics on generation and alternation of extended radio sources. We present a comprehensive structure and sub-structure analysis of the Abell 3266 galaxy cluster. Based on the results of the sub-structure test, position and orientation of a radio relic candidate, and morphology of a prominent tailed radio galaxy in the cluster, we propose an ongoing merger scenario for this chaotic cluster environment. Furthermore, we verify our theory by an N-body simulation of a pre-merger cluster and an in-falling group. The results of the simulation supports our merger scenario by explaining both the orientation of the radio relic and the observed morphology of the tailed radio galaxy.  While there is a weak correlation between the luminosity of radio-loud AGNs and environmental density, tailed radio galaxies make superior probes of over-dense regions. Thus, overall we find tailed radio galaxies can be used to trace overdensities out to z ~ 2 and probe the details of the environments in which they are found.</p>


1984 ◽  
Vol 89 ◽  
pp. 203 ◽  
Author(s):  
M.-H. Ulrich ◽  
D. L. Meier
Keyword(s):  

1989 ◽  
Vol 8 (1) ◽  
pp. 81-85 ◽  
Author(s):  
P. A. Jones

AbstractThe extended radio source 0319-453 (MSH 03-43) was observed with the Molonglo Observatory Synthesis Telescope as part of a program to study a large sample of southern extragalactic radio sources. The low level structure showed a ridge pointing towards the nearby source 0317-456, which also showed low level structure. It is suggested that the two sources are the asymmetric lobes of a radio galaxy identified with the magnitude 15 peculiar dust-land galaxy AM 0319-452. The galaxy redshift of z = 0.0633 and the radio size of 25.6 arcmin give a projected size of 1.27 Mpc (H = 100 kms−1 Mpc−1). Thus it is one of the largest radio galaxies.


2021 ◽  
Author(s):  
◽  
Siamak Dehghan

<p>This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg² area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS).  Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies.  It is believed that tailed radio galaxies reside in the dense environments of clusters and groups, and therefore, may be the signatures of overdensities in large-scale structure. To evaluate the idea of using tailed radio galaxies as tracers of dense environments, a systematic study of these sources as a function of density is required. For this reason and by using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS) data, we examined over four deg² area of the ATLAS-CDFS field, which includes the entire CDFS. We present a catalogue of 56 non-linear, extended, and low surface brightness sources including 45 tailed radio galaxies, two relic candidates, and a possible radio halo. We report the detection of the most distant tailed radio galaxy to date, at a redshift of 2.1688. In addition, despite the lack of deep spectroscopic data in the ATLAS field, we find two of the detected tailed radio galaxies are associated with clusters. We find three Head-Tail galaxy candidates in the CDFS field, all of which are located at high redshifts, where the magnitude constraint of our redshift sample prevents any structure detection.  One of the primary objectives of this research is to investigate the association between the morphology of tailed radio galaxies and the physical characteristics of the surrounding environment. In order to understand the role of the variety of factors that influence the radio morphology, we constructed a simple model that generates the overall radio structure of the sources in different habitats. We report the results of the simulation of the wide-angle tail radio galaxy PKS J0334-3900, which shows that both the gravitation interactions and a cluster wind are required to generate the observed radio tails. As a result, we find the morphology of the tailed radio galaxies as an invaluable tool to probe environmental characteristics.  In a supplementary study, we investigate the role of cluster dynamics on generation and alternation of extended radio sources. We present a comprehensive structure and sub-structure analysis of the Abell 3266 galaxy cluster. Based on the results of the sub-structure test, position and orientation of a radio relic candidate, and morphology of a prominent tailed radio galaxy in the cluster, we propose an ongoing merger scenario for this chaotic cluster environment. Furthermore, we verify our theory by an N-body simulation of a pre-merger cluster and an in-falling group. The results of the simulation supports our merger scenario by explaining both the orientation of the radio relic and the observed morphology of the tailed radio galaxy.  While there is a weak correlation between the luminosity of radio-loud AGNs and environmental density, tailed radio galaxies make superior probes of over-dense regions. Thus, overall we find tailed radio galaxies can be used to trace overdensities out to z ~ 2 and probe the details of the environments in which they are found.</p>


2002 ◽  
Vol 199 ◽  
pp. 193-194
Author(s):  
W. Junor ◽  
F. Mantovani ◽  
R. Morganti ◽  
L. Padrielli

There is some evidence from earlier studies that the two sources 0235 — 197 and 1203 + 043 exhibit low frequency (< 1 GHz) variability. This work shows that both sources have linear polarizations, if any, below the detection limits at 320 MHz, so we cannot explain the variability as being due to instrumental polarization effects as has been suggested for 3C159. Refractive scintillation may be the cause of the variability in 0235—197. The radio source 1203+043 lacks any bright compact component thereby ruling out a refractive scintillation mechanism for its variability. Consequently, it is possible that claims of variability in this source are spurious. However, the 320 MHz VLA observations show that 1203+043 has an ‘X'-shaped radio structure.


Sign in / Sign up

Export Citation Format

Share Document