scholarly journals Genetic Diversity and Population Structure Analysis of Dalbergia Odorifera Germplasm and Development of a Core Collection Using Microsatellite Markers

Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 281 ◽  
Author(s):  
Fu-Mei Liu ◽  
Ning-Nan Zhang ◽  
Xiao-Jin Liu ◽  
Zeng-Jiang Yang ◽  
Hong-Yan Jia ◽  
...  

Dalbergia odorifera T. Chen (Fabaceae) is a woody tree species indigenous to Hainan Island in China. Due to its high medicinal and commercial value, this tree species has been planted over 3500 ha2 in southern China. There is an urgent need for improvement of the D. odorifera germplasm, however, limited information on germplasm collection, conservation, and assessment of genetic resources is available. Therefore, we have built a database of 251 individuals collected across the whole of southern China, which included 42 wild trees and 210 cultivated trees, with the following objectives. (1) Evaluate genetic diversity and population structure of the database using 19 microsatellite markers and (2) develop a core collection for improvement and breeding programs. Totally, the 19 microsatellite markers harbored 77 alleles across the database with the polymorphic information content (PIC) ranging from 0.03 to 0.66. Medium genetic diversity level was inferred by Nei’s gene diversity (0.38), Shannon’s information index (0.65), and observed (0.33) and expected heterozygosity (0.38). Structure analysis showed that four was the optimum cluster size using the model-based Bayesian procedure, and the 251 D. odorifera individuals were grouped into five populations including four pure ones (RP1-4) and one mixed one (MIX) based on their maximum membership coefficients. Among these populations, the expected heterozygosity varied from 0.30 (RP3) to 0.38 (RP4). Analysis of molecular variance (AMOVA) showed 11% genetic variation existed among populations, and moderate population differentiation was inferred by the matrix of pairwise Fst (genetic differentiation among populations), which was in the range of 0.031 to 0.095. Moreover, a core collection of 31 D. odorifera individuals including six wild and 25 cultivated trees was developed, which was only 12.4% of the database but conserved the whole genetic diversity. The results of this study provided additional insight into the genetic structure of the large D. odorifera germplasm, and the core collection will be useful for the efficient and sustainable utilization of genetic resources, as well as efficient improvement in breeding programs.

Author(s):  
Workia Ahmed ◽  
Tileye Feyissa ◽  
Kassahun Tesfaye ◽  
Sumaira Farrakh

Abstract Background Date palm tree (Phoenix dactylifera L.) is a perennial monocotyledonous plant belonging to the Arecaceae family, a special plant with extraordinary nature that gives eminent contributions in agricultural sustainability and huge socio-economic value in many countries of the world including Ethiopia. Evaluation of genetic diversity across date palms at DNA level is very important for breeding and conservation. The result of this study could help to design for genetic improvement and develop germplasm introduction programmes of date palms mainly in Ethiopia. Results In this study, 124 date palm genotypes were collected, and 10 polymorphic microsatellite markers were used. Among 10 microsatellites, MPdCIR085 and MPdCIR093 loci showed the highest value of observed and expected heterozygosity, maximum number of alleles, and highest polymorphic information content values. A total of 112 number of alleles were found, and the mean number of major allele frequency was 0.26, with numbers ranging from 0.155 (MPdCIR085) to 0.374 (MPdCIR016); effective number of alleles with a mean value of 6.61, private alleles ranged from 0.0 to 0.65; observed heterozygosity ranged from 0.355 to 0.726; expected heterozygosity varied from 0.669 to 0.906, polymorphic information content with a mean value of 0.809; fixation index individuals relative to subpopulations ranged from 0.028 for locus MPdCIR032 to 0.548 for locus MPdCIR025, while subpopulations relative to total population value ranged from − 0.007 (MPdCIR070) to 0.891 (MPdCIR015). All nine accesstions, neighbour-joining clustering analysis, based on dissimilarity coefficient values were grouped into five major categories; in population STRUCTURE analysis at highest K value, three groups were formed, whereas DAPC separated date palm genotypes into eight clusters using the first two linear discriminants. Principal coordinate analysis was explained, with a 17.33% total of variation in all populations. Generally, the result of this study revealed the presence of allele variations and high heterozygosity (> 0.7) in date palm genotypes. Conclusions Microsatellites (SSR) are one of the most preferable molecular markers for the study of genetic diversity and population structure of plants. In this study, we found the presence of genetic variations of date palm genotypes in Ethiopia; therefore, these genetic variations of date palms is important for crop improvement and conservation programmes; also, it will be used as sources of information to national and international genbanks.


Author(s):  
R. H. Sammour ◽  
M. A. Karam ◽  
Y. S. Morsi ◽  
R. M. Ali

Abstract The present study aimed to assess population structure and phylogenetic relationships of nine subspecies of Brassica rapa L. represented with thirty-five accessions cover a wide range of species distribution area using isozyme analysis in order to select more diverse accessions as supplementary resources that can be utilized for improvement of B. napus. Enzyme analysis resulted in detecting 14 putative polymorphic loci with 27 alleles. Mean allele frequency 0.04 (rare alleles) was observed in Cat4A and Cat4B in sub species Oleifera accession CR 2204/79 and in subspecies trilocularis accessions CR 2215/88 and CR 2244/88. The highest genetic diversity measures were observed in subspecies dichotoma, accession CR 1585/96 (the highest average of observed (H0) and expected heterozygosity (He), and number of alleles per locus (Ae)). These observations make this accession valuable genetic resource to be included in breeding programs for the improvement of oilseed B. napus. The average fixation index (F) is significantly higher than zero for the analysis accessions indicating a significant deficiency of heteozygosity. The divergence among subspecies indicated very great genetic differentiation (FST = 0.8972) which means that about 90% of genetic diversity is distributed among subspecies, while 10% of the diversity is distributed within subspecies. This coincides with low value of gene flow (Nm = 0.0287). B. rapa ssp. oleifera (turnip rape) and B. rapa ssp. trilocularis (sarson) were grouped under one cluster which coincides with the morphological classification.


Plant Gene ◽  
2017 ◽  
Vol 10 ◽  
pp. 51-59 ◽  
Author(s):  
Jamila Mouhaddab ◽  
Fouad Msanda ◽  
Abdelkarim Filali-Maltouf ◽  
Bouchra Belkadi ◽  
Abderrahim Ferradouss ◽  
...  

2019 ◽  
Vol 64 (No. 10) ◽  
pp. 411-419 ◽  
Author(s):  
Eymen Demir ◽  
Murat Soner Balcioğlu

In the present study, genetic diversity and population structure of Holstein Friesian and three native cattle breeds of Turkey including Turkish Grey Steppe, Eastern Anatolian Red and Anatolian Black were assessed. Totally 120 individuals of 4 breeds were genotyped using 20 microsatellite markers and 204 different alleles, of which 31 were private alleles, were detected. The average observed and expected heterozygosity values were 0.63 and 0.74, respectively. Observed heterozygosity at the marker level ranged from 0.30 (DRBP1) to 0.88 (ILSTS011), while expected heterozygosity ranged from 0.51 (INRABERN172) to 0.88 (SPS113). Inbreeding coefficient values for Turkish Grey Steppe, Eastern Anatolian Red, Anatolian Black and Holstein Friesian were 0.216, 0.202, 0.128 and 0.069, respectively. The lowest pairwise F<sub>ST</sub> value (0.030) was detected between Turkish Grey Steppe and Anatolian Black breeds, while the highest value (0.070) was detected between Turkish Grey Steppe and Holstein Friesian. Results of structure and factorial correspondence analysis revealed that Turkish native cattle breeds and Holstein Friesian were genetically different enough to separate the two breeds. Results of bottleneck analysis indicated heterozygosity deficiency in Turkish Grey Steppe (P &lt; 0.05).


2017 ◽  
Vol 62 (No. 5) ◽  
pp. 219-225 ◽  
Author(s):  
R. Di ◽  
Q.Y. Liu ◽  
F. Xie ◽  
W.P. Hu ◽  
X.-Y. Wang ◽  
...  

China had the largest population of raising donkeys in the world, however the number of Chinese indigenous donkey decreased dramatically due to the increase of agriculture mechanization in the last century. The species has still been important in China because of its edible and medical value, therefore the survey on its genetic diversity in China is necessary for its conservation and utilization. In this study, 15 microsatellite markers were used to evaluate genetic diversity and population structure of five Chinese indigenous donkey breeds. The mean values of expected heterozygosity, allelic richness, and total number of alleles for all the tested Chinese donkeys were 0.70, 6.04, and 6.28 respectively, suggesting that the genetic diversity of Chinese indigenous donkeys is rich. The Bayesian analysis and principal component analysis plot yielded the same clustering result, which revealed that Guanzhong donkey was the most differentiated breed in all detected samples, and Jinnan (JN) and Guangling (GL) were genetically closed together. Additionally, our results indicated that the heterozygote deficit was severe in two Chinese indigenous donkey breeds (GL and JN), and it warned us that animal conservation activities on this species should be considered carefully in near future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucía De la Rosa ◽  
María Isabel López-Román ◽  
Juan M. González ◽  
Encarnación Zambrana ◽  
Teresa Marcos-Prado ◽  
...  

Common vetch (Vicia sativa L.) is a legume used for animal feed because of its high protein content and great capacity for nitrogen fixation, making this crop relevant in sustainable agriculture. The Spanish vetch collection, conserved at the Spanish Plant Genetic Resources Center (CRF), is one of the largest collections of this species worldwide, including landraces, wild relatives mainly collected in Spain, and commercial cultivars, but also accessions of international origin. The analysis of the genetic diversity of this material, whose genome has not been sequenced yet, and the assembly of a representative collection could play a pivotal role in conserving and exploiting these genetic resources in breeding programs mainly in those focused on consequences and demands of climate change. In this work, a set of 14 simple sequence repeat (SSR) reference alleles for genetic diversity analysis of the CRF vetch collection has been developed, used for genotyping more than 545 common vetch accessions from all over the world and validated. All the tested markers were polymorphic for the analyzed accessions. Overall, at least 86 different loci were identified with 2–11 alleles per locus with an average of 6.1 alleles per locus. Also, the analyses of the generated SSR database support that most of these SSR markers are transferable across closely related species of Vicia genus. Analysis of molecular variance revealed that wild relatives have a higher genetic diversity than landraces. However, cultivars have similar diversity than landraces, indicating that genetic variability has been barely lost due to the breeding of this legume. Low differences of genetic variations between Spanish and non-Spanish accessions have been observed, suggesting a high degree of diversity within Spanish genotypes, which provide 95% of the total genetic variation, so we have focused our efforts on characterizing genotypes of Spanish origin that were further studied using storage protein profiles. Based on SSR, seed protein profiles, and agromorphological and passport data, a vetch core collection (VCC) containing 47 V. sativa accessions of Spanish origin has been established. In this collection, the characterization has been expanded using ISSR markers, and it has been reevaluated with new agromorphological data, including drought tolerance characters. This VCC presents a minimum loss of genetic diversity concerning the total collection and constitutes an invaluable material that can be used in future breeding programs for direct use in a resilient agricultural system.


2020 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Siti Halimah Larekeng ◽  
Yusniar Yusniar ◽  
Muh Restu ◽  
Rismawati Rismawati ◽  
Yuni Fitri Cahyaningsih ◽  
...  

Duabanga moluccana Blume, locally known as Rajumas, is a tree species that suitable for building materials, pulp, and plywood. The information about genetic diversity is required for the conserving of this species. Here, we elucidated the genetic diversity of D. moluccana from two provenances in West Nusa Tenggara, Indonesia. Four microsatellite markers successfully amplified 12 randomly selected samples and produced polymorphic DNA bands. Those primers were DMAG10, DMAG09, DMACAG01 and DMTCAC11. High genetic diversity was detected in the populations with 0.54 of mean expected heterozygosity (He). The genetic variation among individuals was 100%, whereas there were no genetic variations among populations and within individuals


2000 ◽  
Vol 48 (3) ◽  
pp. 313 ◽  
Author(s):  
G. F. Moran ◽  
P. A. Butcher ◽  
J. C. Glaubitz

Domestication programs are currently being developed for a number of Australasian tropical tree species for plantations largely outside Australia. An assessment of the genetic resources of several species has been made on the basis of levels and patterns of genetic diversity at molecular marker loci. On the basis of growth performance and other quantitatively inherited commercial traits, populations from only limited regions of the geographic range were included in baseline selections of breeding programs for species such as Acacia mangium, A. auriculiformis, A. aulacocarpa and Eucalyptus pellita. For A. mangium, this domestication strategy resulted in a high proportion of the genetic resources of the species being included in breeding programs, but for other species such as A. aulacocarpa a significant fraction of the genetic resources were not incorporated into the baseline populations. The same molecular marker data sets enabled the formulation of conservation strategies both in situ and ex situ for these important commercial species. Within Australia many tree species are utilised directly from native forests in the absence of domestication efforts. Preliminary results from a study on genetic impacts of silvicultural regeneration practices in native forests indicate that there is very limited loss in genetic diversity in E. sieberi, a locally abundant species, under either clearfelling with aerial resowing or the seed tree system. Questions remain concerning the impact of silvicultural regeneration practices on species that are more locally rare.


2015 ◽  
Vol 15 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Hedia Bourguiba ◽  
Mohamed-Amine Batnini ◽  
Lamia Krichen ◽  
Neila Trifi-Farah ◽  
Jean-Marc Audergon

North Africa enclosed original apricot genetic resources with the cohabitation of grafting and seed-propagated accessions. In this study, we assessed the genetic diversity and population structure of 183 apricot accessions using 24 microsatellite markers distributed evenly in the Prunus genome. A total of 192 alleles and a high level of gene diversity (0.593) were detected among the whole panel. Genetic structure analysis revealed the presence of four genetic clusters. We also found that both geographical origin and mode of propagation are important factors structuring genetic diversity in apricot species. Results confirmed the presence of gene exchange between the northern and southern countries of the Mediterranean Basin. Subsequently, a core collection of 98 accessions based on M (maximization) strategy showing 99.47% of allele retention ratio was constructed. No significant differences for Shannon's information index and Nei's diversity index were observed between the core and entire collections. Our results provide an effective aid for future germplasm preservation and conservation strategies as well as genetic association studies development in relation to phenotypic data.


2020 ◽  
Author(s):  
Geovani Luciano de Oliveira ◽  
Anete Pereira de Souza ◽  
Fernanda Ancelmo de Oliveira ◽  
Maria Imaculada Zucchi ◽  
Lívia Moura de Souza ◽  
...  

AbstractThe management of germplasm banks is complex, especially when many accessions are involved. Microsatellite markers are an efficient tool for assessing the genetic diversity of germplasm collections, optimizing their use in breeding programs. This study genetically characterizes a large collection of 410 grapevine accessions maintained at the Agronomic Institute of Campinas (IAC) (Brazil). The accessions were genotyped with 17 highly polymorphic microsatellite markers. Genetic data were analyzed to determine the genetic structure of the germplasm, quantify its allelic diversity, suggest the composition of a core collection, and discover cases of synonymy, duplication, and misnaming. A total of 304 alleles were obtained, and 334 unique genotypes were identified. The molecular profiles of 145 accessions were confirmed according to the literature and databases, and the molecular profiles of more than 100 genotypes were reported for the first time. The analysis of the genetic structure revealed different levels of stratification. The primary division was between accessions related to Vitis vinifera and V. labrusca, followed by their separation from wild grapevine. A core collection of 120 genotypes captured 100% of all detected alleles. The accessions selected for the core collection may be used in future phenotyping efforts, in genome association studies, and for conservation purposes. Genetic divergence among accessions has practical applications in grape breeding programs, as the choice of relatively divergent parents will maximize the frequency of progeny with superior characteristics. Together, our results can enhance the management of grapevine germplasm and guide the efficient exploitation of genetic diversity to facilitate the development of new grape cultivars for fresh fruits, wine, and rootstock.


Sign in / Sign up

Export Citation Format

Share Document