scholarly journals Genome-Wide Association Study (GWAS) for Mesocotyl Elongation in Rice (Oryza sativa L.) under Multiple Culture Conditions

Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 49 ◽  
Author(s):  
Hongyan Liu ◽  
Junhui Zhan ◽  
Jiaolong Li ◽  
Xiang Lu ◽  
Jindong Liu ◽  
...  

Mesocotyl is a crucial organ for pushing buds out of soil, which plays a vital role in seedling emergence and establishment in dry direct-seeded rice. However, the genetic mechanisms of mesocotyl elongation remains unclear. In our study, 208 rice accessions were used to identify the SNPs significantly associated with mesocotyl length under various culture conditions, including sand, water and soil. The mesocotyl length ranges from 0 to 4.88 cm, 0 to 3.99 cm and 0 to 4.51 cm in sand, water and soil covering, respectively. A total of 2,338,336 SNPs were discovered by re-sequencing of 208 rice accessions. Genome-wide association study (GWAS) based on mixed linear model (MLM) was conducted and 16 unique loci were identified on chromosomes 1, 2 (2), 3, 4, 5 (2), 6 (2), 7, 8, 9 (2) and 12 (3), respectively, explaining phenotypic variations ranging from 6.3 to 15.9%. Among these loci, 12 were stable across two or more environments. Ten out of the sixteen loci coincided with known genes or quantitative trait locus (QTL), whereas the other six were potentially novel loci. Furthermore, five high-confidence candidate genes related to mesocotyl elongation were identified on chromosomes 1, 3, 5, 9 and 12. Moreover, qRT-PCR analysis showed that all the five genes showed significant expression difference between short-mesocotyl accessions and long-mesocotyl accessions. This study provides new insights into the genetic architecture of rice mesocotyl, the associated SNPs and germplasms with long mesocotyl could be useful in the breeding of mechanized dry direct-seeded rice.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 518
Author(s):  
Siriporn Korinsak ◽  
Clive T. Darwell ◽  
Samart Wanchana ◽  
Lawan Praphaisal ◽  
Siripar Korinsak ◽  
...  

Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1–6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.


2020 ◽  
Vol 21 (14) ◽  
pp. 4930
Author(s):  
Mingnan Qu ◽  
Jemaa Essemine ◽  
Ming Li ◽  
Shuoqi Chang ◽  
Tiangen Chang ◽  
...  

Respiration is a major plant physiological process that generates adenosine triphosphate (ATP) to support the various pathways involved in the plant growth and development. After decades of focused research on basic mechanisms of respiration, the processes and major proteins involved in respiration are well elucidated. However, much less is known about the natural variation of respiration. Here we conducted a survey on the natural variation of leaf dark respiration (Rd) in a global rice minicore diversity panel and applied a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with Rd. This rice minicore diversity panel consists of 206 accessions, which were grown under both growth room (GR) and field conditions. We found that Rd shows high single-nucleotide polymorphism (SNP) heritability under GR and it is significantly affected by genotype-environment interactions. Rd also exhibits strong positive correlation to the leaf thickness and chlorophyll content. GWAS results of Rd collected under GR and field show an overlapped genomic region in the chromosome 3 (Chr.3), which contains a lead SNP (3m29440628). There are 12 candidate genes within this region; among them, three genes show significantly higher expression levels in accessions with high Rd. Particularly, we observed that the LRK1 gene, annotated as leucine rich repeat receptor kinase, was up-regulated four times. We further found that a single significantly associated SNPs at the promoter region of LRK1, was strongly correlated with the mean annual temperature of the regions from where minicore accessions were collected. A rice lrk1 mutant shows only ~37% Rd of that of WT and retarded growth following exposure to 35 °C for 30 days, but only 24% reduction in growth was recorded under normal temperature (25 °C). This study demonstrates a substantial natural variation of Rd in rice and that the LRK1 gene can regulate leaf dark respiratory fluxes, especially under high temperature.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Jinhong Wu ◽  
Fangjun Feng ◽  
Xingming Lian ◽  
Xiaoying Teng ◽  
Haibin Wei ◽  
...  

2014 ◽  
Vol 66 (1) ◽  
pp. 293-306 ◽  
Author(s):  
Yoshiaki Ueda ◽  
Felix Frimpong ◽  
Yitao Qi ◽  
Elsa Matthus ◽  
Linbo Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document