scholarly journals Homozygous Splice Site Mutation in ZP1 Causes Familial Oocyte Maturation Defect

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 382 ◽  
Author(s):  
Özlem Okutman ◽  
Cem Demirel ◽  
Firat Tülek ◽  
Veronique Pfister ◽  
Umut Büyük ◽  
...  

In vitro fertilization (IVF) involves controlled ovarian hyperstimulation using hormones to produce large numbers of oocytes. The success of IVF is tightly linked to the availability of mature oocytes. In most cases, about 70% to 80% of the oocytes are mature at the time of retrieval, however, in rare instances, all of them may be immature, implying that they were not able to reach the metaphase II (MII) stage. The failure to obtain any mature oocytes, despite a well conducted ovarian stimulation in repeated cycles is a very rare cause of primary female infertility, for which the underlying suspected genetic factors are still largely unknown. In this study, we present the whole exome sequencing analysis of a consanguineous Turkish family comprising three sisters with a recurrent oocyte maturation defect. Analysis of the data reveals a homozygous splice site mutation (c.1775-3C>A) in the zona pellucida glycoprotein 1 (ZP1) gene. Minigene experiments show that the mutation causes the retention of the intron 11 sequence between exon 11 and exon 12, resulting in a frameshift and the likely production of a truncated protein.

2019 ◽  
Vol 57 (3) ◽  
pp. 187-194 ◽  
Author(s):  
Wenjing Wang ◽  
Jie Dong ◽  
Biaobang Chen ◽  
Jing Du ◽  
Yanping Kuang ◽  
...  

BackgroundAbnormal pronuclear formation during fertilisation and subsequent early embryonic arrest results in female infertility. In recent years, with the prevalence of assisted reproductive technology, a few genes have been identified that are involved in female infertility caused by abnormalities in oocyte development, fertilisation and embryonic development. However, the genetic factors responsible for multiple pronuclei formation during fertilisation and early embryonic arrest remain largely unknown.ObjectiveWe aim to identify genetic factors responsible for multiple pronuclei formation during fertilisation or early embryonic arrest.MethodsWhole-exome sequencing was performed in a cohort of 580 patients with abnormal fertilisation and early embryonic arrest. Effects of mutations were investigated in HEK293T cells by western blotting and immunoprecipitation, as well as minigene assay.ResultsWe identified a novel homozygous missense mutation (c.397T>G, p.C133G) and a novel homozygous donor splice-site mutation (c.546+5G>A) in the meiotic gene REC114. REC114 is involved in the formation of double strand breaks (DSBs), which initiate homologous chromosome recombination. We demonstrated that the splice-site mutation affected the normal alternative splicing of REC114, while the missense mutation reduced the protein level of REC114 in vitro and resulted in the loss of its function to protect its partner protein MEI4 from degradation.ConclusionsOur study has identified mutations in REC114 responsible for human multiple pronuclei formation and early embryonic arrest, and these findings expand our knowledge of genetic factors that are responsible for normal human female meiosis and fertility.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuya Ito ◽  
Takahiro Takazono ◽  
Satoru Koga ◽  
Yuichiro Nakano ◽  
Nobuyuki Ashizawa ◽  
...  

Abstract Background The recent increase in cases of azole-resistant Aspergillus fumigatus (ARAf) infections is a major clinical concern owing to its treatment limitations. Patient-derived ARAf occurs after prolonged azole treatment in patients with aspergillosis and involves various cyp51A point mutations or non-cyp51A mutations. The prognosis of patients with chronic pulmonary aspergillosis (CPA) with patient-derived ARAf infection remains unclear. In this study, we reported the case of a patient with ARAf due to HapE mutation, as well as the virulence of the isolate. Case presentation A 37-year-old male was presented with productive cough and low-grade fever. The patient was diagnosed with CPA based on the chronic course, presence of a fungus ball in the upper left lobe on chest computed tomography (CT), positivity for Aspergillus-precipitating antibody and denial of other diseases. The patient underwent left upper lobe and left S6 segment resection surgery because of repeated haemoptysis during voriconazole (VRC) treatment. The patient was postoperatively treated with VRC for 6 months. Since then, the patient was followed up without antifungal treatment but relapsed 4 years later, and VRC treatment was reinitiated. Although an azole-resistant isolate was isolated after VRC treatment, the patient did not show any disease progression in either respiratory symptoms or radiological findings. The ARAf isolated from this patient showed slow growth, decreased biomass and biofilm formation in vitro, and decreased virulence in the Galleria mellonella infection model compared with its parental strain. These phenotypes could be caused by the HapE splice site mutation. Conclusions This is the first to report a case demonstrating the clinical manifestation of a CPA patient infected with ARAf with a HapE splice site mutation, which was consistent with the in vitro and in vivo attenuated virulence of the ARAf isolate. These results imply that not all the ARAf infections in immunocompetent patients require antifungal treatment. Further studies on the virulence of non-cyp51A mutations in ARAf are warranted.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liangshan Li ◽  
Xiangmao Bu ◽  
Yuhua Ji ◽  
Ping Tan ◽  
Shiguo Liu

Background: Cohen syndrome (CS) is a clinically heterogeneous disorder characterized by extensive phenotypic variation with autosomal recessive inheritance. VPS13B was identified to be the disease-causing gene for CS. The objectives of the present study were to screen likely pathogenic mutations of the patient with developmental delay and mental retardation, and to determinate the effect of this splice-site mutation by reverse transcription analysis.Methods: Whole exome sequencing (WES) in combination with Sanger sequencing were performed to identify the causative mutations of this CS family. Subsequently, the impact of the intronic variant on splicing was analyzed by reverse transcription and the construction of expression vector.Results: A novel homozygous splice-site mutation (c.6940+1G>T) in the VPS13B gene was identified in this proband. Sanger sequencing analysis of the cDNA demonstrated that the c.6940+1G>T variant could cause the skipping of entire exon 38, resulting in the loss of 208 nucleotides and further give rise to the generation of a premature in-frame stop codon at code 2,247.Conclusions: The homozygous VPS13B splicing variant c.6940+1G>T was co-segregated with the CS phenotypes in this family and was identified to be the cause of CS after comprehensive consideration of the clinical manifestations, genetic analysis and cDNA sequencing result.


2017 ◽  
Vol 48 (S 01) ◽  
pp. S1-S45
Author(s):  
O. Schwartz ◽  
J. Althaus ◽  
B. Fiedler ◽  
K. Heß ◽  
W. Paulus ◽  
...  

2018 ◽  
Vol 70 (5) ◽  
Author(s):  
Melahat M. Oguz ◽  
Meltem Akcaboy ◽  
Asuman Gurkan ◽  
Esma Altinel Acoglu ◽  
Pelin Zorlu ◽  
...  

Author(s):  
Er-Meng Gao ◽  
Bongkoch Turathum ◽  
Ling Wang ◽  
Di Zhang ◽  
Yu-Bing Liu ◽  
...  

AbstractThis study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.


Sign in / Sign up

Export Citation Format

Share Document