scholarly journals Arabidopsis NPF4.6 and NPF5.1 Control Leaf Stomatal Aperture by Regulating Abscisic Acid Transport

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 885
Author(s):  
Takafumi Shimizu ◽  
Yuri Kanno ◽  
Hiromi Suzuki ◽  
Shunsuke Watanabe ◽  
Mitsunori Seo

The plant hormone abscisic acid (ABA) is actively synthesized in vascular tissues and transported to guard cells to promote stomatal closure. Although several transmembrane ABA transporters have been identified, how the movement of ABA within plants is regulated is not fully understood. In this study, we determined that Arabidopsis NPF4.6, previously identified as an ABA transporter expressed in vascular tissues, is also present in guard cells and positively regulates stomatal closure in leaves. We also found that mutants defective in NPF5.1 had a higher leaf surface temperature compared to the wild type. Additionally, NPF5.1 mediated cellular ABA uptake when expressed in a heterologous yeast system. Promoter activities of NPF5.1 were detected in several leaf cell types. Taken together, these observations indicate that NPF5.1 negatively regulates stomatal closure by regulating the amount of ABA that can be transported from vascular tissues to guard cells.

Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1247-1255 ◽  
Author(s):  
Eiji Nambara ◽  
Masaharu Suzuki ◽  
Suzanne Abrams ◽  
Donald R McCarty ◽  
Yuji Kamiya ◽  
...  

Abstract The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (−)-(R)-ABA, an enantiomer of the natural (+)-(S)-ABA. The premise of the screen was to identify mutations that preferentially alter their germination response in the presence of one stereoisomer vs. the other. Twenty-six mutants were identified and genetic analysis on 23 lines defines two new loci, designated CHOTTO1 and CHOTTO2, and a collection of new mutant alleles of the ABA-insensitive genes, ABI3, ABI4, and ABI5. The abi5 alleles are less sensitive to (+)-ABA than to (−)-ABA. In contrast, the abi3 alleles exhibit a variety of differences in response to the ABA isomers. Genetic and molecular analysis of these alleles suggests that the ABI3 transcription factor may perceive multiple ABA signals.


Author(s):  
Md Tahjib-Ul-Arif ◽  
Shintaro Munemasa ◽  
Toshiyuki Nakamura ◽  
Yoshimasa Nakamura ◽  
Yoshiyuki Murata

Abstract Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


2018 ◽  
Vol 10 (3) ◽  
pp. 7
Author(s):  
Xiaolin Wang ◽  
Ningning Zhang ◽  
Jiakun Yan

With a varied physical environment, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. As one of many pathways conserved in a long time evolution, the abscisic acid (ABA) signaling pathway has been identified as a central regulator to control gene expression and generate physiological adaptation to various stressful conditions in plant. As abscisic acid receptors, PYR/PYL/RCARs have been proved to regulate stomatal closure. Here we detected the root cell hydraulic conductivity and the aquaporin expression under treatment of exogenous ABA in wild-type and pyr1/pyl1/pyl2/pyl4 mutant Arabidopsis using cell pressure probe and qRT-PCR technology. The results showed that PYR/PYL/RCAR receptors regulate root cell hydraulic conductivity through activating aquaporin expression. Lastly, we discussed how plants maintain water balance combined with the data obtained from published articles.


2015 ◽  
Vol 290 (21) ◽  
pp. 13042-13052 ◽  
Author(s):  
Tiziana Vigliarolo ◽  
Lucrezia Guida ◽  
Enrico Millo ◽  
Chiara Fresia ◽  
Emilia Turco ◽  
...  

1997 ◽  
Vol 12 (1) ◽  
pp. 203-213 ◽  
Author(s):  
Alexander Grabov ◽  
Jeffrey Leung ◽  
Jerome Giraudat ◽  
Michael R. Blatt

2020 ◽  
Vol 11 ◽  
Author(s):  
Zong-Qi Wang ◽  
Qi Liu ◽  
Ju-Hua Wu ◽  
Juan Li ◽  
Jun-Min He ◽  
...  

Stomata are a key land plant innovation that permit the regulation of gaseous exchanges between the plant interior and the surrounding environment. By opening or closing, stomata regulate transpiration of water though the plant; and these actions are coordinated with acquisition of CO2 for photosynthesis. Stomatal movement is controlled by various environmental and physiological factors and associates with multiple intracellular activities, among which the dynamic remodeling of vacuoles plays a crucial role. Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is critical for dynamic remodeling of vacuoles. Its production requires a PI(3,5)P2-metabolizing complex consisting of FAB1/PIKfyve kinases, SAC phosphatases, and the scaffolding protein VAC14. Although genetic or pharmacological downregulation of PI(3,5)P2 causes hyposensitivity to ABA-induced stomatal closure, whether the effect of PI(3,5)P2 on stomatal movement is cell-autonomous and the physiological consequences of its reduction were unclear. We report that downregulating Arabidopsis VAC14 specifically in guard cells by artificial microRNAs (amiR-VAC14) results in enlarged guard cells and hyposensitivity to ABA- and dark-induced stomatal closure. Vacuolar fission during stomatal closure is compromised by downregulating VAC14 in guard cells. Exogenous application of PI(3,5)P2 rescued the amiR-VAC14 phenotype whereas PI(3,5)P2 inhibitor YM201636 caused wild-type plants to have inhibited stomatal closure. We further show that downregulating VAC14 specifically in guard cells impairs drought tolerance, suggestive of a key role of guard cell-produced PI(3,5)P2 in plant fitness.


Sign in / Sign up

Export Citation Format

Share Document