scholarly journals MED12 Mutation in Two Families with X-Linked Ohdo Syndrome

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1328
Author(s):  
Luca Rocchetti ◽  
Eloisa Evangelista ◽  
Luigia De Falco ◽  
Giovanni Savarese ◽  
Pasquale Savarese ◽  
...  

X-linked intellectual deficiency (XLID) is a widely heterogeneous group of genetic disorders that involves more than 100 genes. The mediator of RNA polymerase II subunit 12 (MED12) is involved in the regulation of the majority of RNA polymerase II-dependent genes and has been shown to cause several forms of XLID, including Opitz-Kaveggia syndrome also known as FG syndrome (MIM #305450), Lujan-Fryns syndrome (MIM #309520) and the X-linked Ohdo syndrome (MIM #300895). Here, we report on two first cousins with X-linked Ohdo syndrome with a missense mutation in MED12 gene, identified through whole exome sequencing. The probands had facial features typical of X-linked Ohdo syndrome, including blepharophimosis, ptosis, a round face with a characteristic nose and a narrow mouth. Nextera DNA Exome kit (Illumina Inc., San Diego, CA, USA) was used for exome capture. The variant identified was a c.887G > A substitution in exon 7 of the MED12 gene leading to the substitution of a glutamine for a highly conserved arginine (p. Arg296Gln). Although the variant described has been previously reported in the literature, our study contributes to the expanding phenotypic spectrum of MED12-related disorders and above all, it demonstrates the phenotypic variability among different affected patients despite harboring identical mutations.

2021 ◽  
pp. 1-10
Author(s):  
Manal M. Thomas ◽  
Engy A. Ashaat ◽  
Ghada A. Otaify ◽  
Samira Ismail ◽  
Mona L. Essawi ◽  
...  

Desbuquois dysplasia type 1 (DBQD1) is a very rare skeletal dysplasia characterized by growth retardation, short stature, distinct hand features, and a characteristic radiological monkey wrench appearance at the proximal femur. We report on 2unrelated Egyptian patients having the characteristic features of DBQD1 with different expressivity. Patient 1 presented at the age of 45 days with respiratory distress, short limbs, faltering growth, and distinctive facies while patient 2 presented at 5 years of age with short stature and hypospadias. The 2 patients shared radiological features suggestive of DBQD1. Whole-exome sequencing revealed a homozygous frameshift mutation in the <i>CANT1</i> gene (NM_001159772.1:c.277_278delCT; p.Leu93ValfsTer89) in patient 1 and a homozygous missense mutation (NM_138793.4:c.898C&#x3e;T; p.Arg300Cys) in patient 2. Phenotypic variability and variable expressivity of DBQD was evident in our patients. Hypoplastic scrotum and hypospadias were additional unreported associated findings, thus expanding the phenotypic spectrum of the disorder. We reviewed the main features of skeletal dysplasias exhibiting similar radiological manifestations for differential diagnosis. We suggest that the variable severity in both patients could be due to the nature of the <i>CANT1</i> gene mutations which necessitates the molecular study of more cases for phenotype-genotype correlations.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document