scholarly journals Bradoriids (Arthropoda) and the Cambrian Diversification

Geosciences ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 119
Author(s):  
Mark A. S. McMenamin

Bradoriids, among the earliest arthropods to appear in the fossil record, are extinct, ostracod-like bivalved forms that ranged from the early Cambrian to the Middle Ordovician. Bradoriids are notable for having appeared in the Cambrian fossil record before the earliest trilobites, and considering their rapid ascent to high genus-level diversity, provide key data for our understanding of the evolutionary dynamics of the Cambrian Explosion. This paper presents a broad review of bradoriid paleobiology. It is hypothesized here that an allele of Antennapedia determines whether bradoriid shields are preplete, amplete, or postplete. The preplete configuration of the shields of Cambroarchilocus tigris gen. nov. sp. nov. suggests that shield rowing motion may have propelled the animal backwards. Arcuate scars attributed here to a microdurophagous predator (Arcuoichnus pierci nov. ichnogen. nov. ichnosp.) occur on the paratype of Cambroarchilocus tigris gen. nov. sp. nov.

1980 ◽  
Vol 3 ◽  
pp. 86-93
Author(s):  
James Sprinkle

The initial explosive radiation of echinoderms in the Cambrian and Ordovician is very likely the single most spectacular evolutionary pattern shown by echinoderms during their long fossil record. This radiation involved 19–20 echinoderm classes and lasted from the Early Cambrian (perhaps latest Precambrian) to the end of the Middle Ordovician. It is important because in many ways this initial radiation determined the entire Paleozoic record for echinoderms. In addition, it is almost a textbook example of a major adaptive radiation (Raup and Stanley, 1978, p. 307, 357–360), and also fits nicely the two-stage metazoan diversification model for the Early Paleozoic outlined by Sepkoski (1979).


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 851-859 ◽  
Author(s):  
J.W. Valentine ◽  
D. Jablonski ◽  
D.H. Erwin

The Cambrian explosion is named for the geologically sudden appearance of numerous metazoan body plans (many of living phyla) between about 530 and 520 million years ago, only 1.7% of the duration of the fossil record of animals. Earlier indications of metazoans are found in the Neoproterozic; minute trails suggesting bilaterian activity date from about 600 million years ago. Larger and more elaborate fossil burrows appear near 543 million years ago, the beginning of the Cambrian Period. Evidence of metazoan activity in both trace and body fossils then increased during the 13 million years leading to the explosion. All living phyla may have originated by the end of the explosion. Molecular divergences among lineages leading to phyla record speciation events that have been earlier than the origins of the new body plans, which can arise many tens of millions of years after an initial branching. Various attempts to date those branchings by using molecular clocks have disagreed widely. While the timing of the evolution of the developmental systems of living metazoan body plans is still uncertain, the distribution of Hox and other developmental control genes among metazoans indicates that an extensive patterning system was in place prior to the Cambrian. However, it is likely that much genomic repatterning occurred during the Early Cambrian, involving both key control genes and regulators within their downstream cascades, as novel body plans evolved.


2019 ◽  
Author(s):  
Mark McMenamin

Deuterostomes make a sudden appearance in the fossil record during the Early Cambrian. Two deuterostome groups, the chordates and the vetulicolians, are of particular interest for understanding the evolutionary dynamics of the Cambrian evolutionary event. Lagerstätten in China and elsewhere have dramatically improved our understanding of the range of variation in these ancient animals. Cephalochordate and vertebrate body plans are well established at least by Cambrian Series 2. Taken together, roughly a dozen chordate genera and fifteen vetulicolian genera document an explosive radiation of deuterostomes at the base of the Cambrian. A new vetulicolian with a polygonal anterior section and a narrow, unsegmented posterior region (‘tail’) bearing possible myotomes provides new insight into the affinities of the various body plans that emerged during the Early Cambrian. It seems clear that the advent of deuterostomes near the Cambrian boundary involved both a reversal of gut polarity and a two-sided retinoic acid gradient, with a gradient discontinuity at the midpoint of the organism that is reflected in the sharp division of vetulicolians into anterior and posterior sections.


PalZ ◽  
2021 ◽  
Author(s):  
Xingliang Zhang ◽  
Degan Shu

AbstractThe Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.


2016 ◽  
Vol 113 (25) ◽  
pp. 6945-6948 ◽  
Author(s):  
Luis A. Buatois ◽  
Maria G. Mángano ◽  
Ricardo A. Olea ◽  
Mark A. Wilson

Contrasts between the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE) have long been recognized. Whereas the vast majority of body plans were established as a result of the CE, taxonomic increases during the GOBE were manifested at lower taxonomic levels. Assessing changes of ichnodiversity and ichnodisparity as a result of these two evolutionary events may shed light on the dynamics of both radiations. The early Cambrian (series 1 and 2) displayed a dramatic increase in ichnodiversity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Cambrian bioerosion structures are known. After the middle to late Cambrian diversity plateau, ichnodiversity in softground communities shows a continuous increase during the Ordovician in both shallow- and deep-marine environments. This Ordovician increase in bioturbation diversity was not paralleled by an equally significant increase in ichnodisparity as it was during the CE. However, hard substrate communities were significantly different during the GOBE, with an increase in ichnodiversity and ichnodisparity. Innovations in macrobioerosion clearly lagged behind animal–substrate interactions in unconsolidated sediment. The underlying causes of this evolutionary decoupling are unclear but may have involved three interrelated factors: (i) a Middle to Late Ordovician increase in available hard substrates for bioerosion, (ii) increased predation, and (iii) higher energetic requirements for bioerosion compared with bioturbation.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-043 ◽  
Author(s):  
Feiyang Chen ◽  
Glenn A. Brock ◽  
Zhiliang Zhang ◽  
Brittany Laing ◽  
Xinyi Ren ◽  
...  

The Guanshan Biota is an unusual early Cambrian Konservat-Lagerstätte from China and is distinguished from all other exceptionally preserved Cambrian biotas by the dominance of brachiopods and a relatively shallow depositional environment. However, the faunal composition, overturn and sedimentology associated with the Guanshan Biota are poorly understood. This study, based on collections through the best-exposed succession of the basal Wulongqing Formation at the Shijiangjun section, Wuding County, eastern Yunnan, China recovered six major animal groups with soft tissue preservation; brachiopods vastly outnumbered all other groups. Brachiopods quickly replace arthropods as the dominant fauna following a transgression at the base of the Wulongqing Formation. A transition from a botsfordiid-, eoobolid- and acrotretid- to an acrotheloid-dominated brachiopod assemblage occurs up-section. Four episodically repeated lithofacies reveal a relatively low-energy, offshore to lower shoreface sedimentary environment at the Shijiangjun section, which is very different from the Wulongqing Formation in the Malong and Kunming areas. Multiple event flows and rapid obrution are responsible for faunal overturn and fluctuation through the section. A detailed lithofacies and palaeontological investigation of this section provides a better understanding of the processes and drivers of faunal overturn during the later phase of the Cambrian Explosion.Supplementary material: Composition and comparison of the Malong Fauna and the Guanshan Biota is are available at: https://doi.org/10.6084/m9.figshare.c.5080799


1990 ◽  
Vol 64 (1) ◽  
pp. 39-43 ◽  
Author(s):  
David R. Kobluk ◽  
Iqbal Noor

A disk-shaped massive colony of Tetradium, from the Middle Ordovician Bobcaygeon Formation in southern Ontario, displays features of a coral microatoll. This is the first pre-Holocene coral microatoll yet described, indicating that some tabulate corals in level-bottom communities were growing as microatolls as do many modern colonial skeleton-secreting organisms.The microatoll therefore is not strictly a Quaternary or even Cenozoic phenomenon, but has a fossil record that may span most of the Phanerozoic. This indicates that the special conditions necessary for microatoll growth have existed outside of reef environments, and were present before the advent of scleractinian coral reefs. It may be possible to use ancient microatolls to estimate absolute water depths at low tide, thereby providing a means for estimating maximum water depths on a local and regional scale.


2018 ◽  
Vol 115 (21) ◽  
pp. 5323-5331 ◽  
Author(s):  
Allison C. Daley ◽  
Jonathan B. Antcliffe ◽  
Harriet B. Drage ◽  
Stephen Pates

Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1300-1309 ◽  
Author(s):  
Rampal S. Etienne ◽  
Bart Haegeman ◽  
Tanja Stadler ◽  
Tracy Aze ◽  
Paul N. Pearson ◽  
...  

The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence ( Dendroica , Plethodon and Heliconius ). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.


2015 ◽  
Vol 152 (6) ◽  
pp. 1145-1148 ◽  
Author(s):  
MAŁGORZATA MOCZYDŁOWSKA ◽  
GRAHAM E. BUDD ◽  
HEDA AGIĆ

AbstractWe report the occurrence of organically preserved microfossils from the subsurface Ediacaran strata overlying the East European Platform in Poland, in the form of sclerites and cuticle fragments of larger organisms. They are morphologically similar to those known from Cambrian strata and associated with various metazoan fossils of recognized phyla. The Ediacaran age of the microfossils is evident from the stratigraphic position below the base of the Cambrian System and above the isotopically dated tuff layers at c. 551±4Ma. Within this strata interval, other characteristic Ediacaran microorganisms co-occur such as cyanobacteria, vendotaenids, microalgae, Ceratophyton, Valkyria and macroscopic annelidan Sabellidites. The recent contributions of organic sclerites in revealing the scope of the Cambrian explosion are therefore also potentially extendable back to the Ediacaran Period when animals first appear in the fossil record.


Sign in / Sign up

Export Citation Format

Share Document