scholarly journals Machine Learning Applied to K-Bentonite Geochemistry for Identification and Correlation: The Ordovician Hagan K-Bentonite Complex Case Study

Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 380
Author(s):  
Achim D. Herrmann ◽  
John T. Haynes ◽  
Richard M. Robinet ◽  
Norlene R. Emerson

Altered tephras (K-bentonites) are of great importance for calibration of the geologic time scale, for local, regional, and global correlations, and paleoenvironmental reconstructions. Thus, definitive identification of individual tephras is critical. Single crystal geochemistry has been used to differentiate tephra layers, and apatite is one of the phenocrysts commonly occurring in tephras that has been widely used. Here, we use existing and newly acquired analytical datasets (electron probe micro-analyzer [EPMA] data and laser ablation ICP-MS [LA-ICP-MS] data, respectively) of apatite in several Ordovician K-bentonites that were collected from localities about 1200 km apart (Minnesota/Iowa/Wisconsin and Alabama, United States) to test the use of machine-learning (ML) techniques to identify with confidence individual tephra layers. Our results show that the decision tree based on EPMA data uses the elemental concentration patterns of Mg, Mn, and Cl, consistent with previous studies that emphasizes the utility of these elements for distinguishing Ordovician K-bentonites. Differences in the experimental setups of the analyses, however, can lead to offsets in absolute elemental concentrations that can have a significant impact on the correct identification and correlation of individual K-bentonite beds. The ML model using LA-ICP-MS data was able to identify several K-bentonites in the southern Appalachians and establish links to K-bentonites samples from the Upper Mississippi Valley. Furthermore, the ML model identified individual layers of multiphase eruptions, thus illustrating very well the great potential of applying ML techniques to tephrochronology.

2020 ◽  
Vol 28 (2) ◽  
pp. 130-141
Author(s):  
A Karthikeyan ◽  
A Karthikeyan ◽  
K Venkatesh Raja

The multi-hole operation is a frequently used process in an industry. Owing to the escalating demand for reducing the production cost and time, it is inevitable for any manufacturing industry to develop an optimistic process plan. This research work mainly focuses on developing a novel combinatorial meta-heuristic hybrid technique for solving the proposed multi-hole drill sequencing problem. The integrated genetic and simulated annealing algorithm is hereby proposed and tested against assorted complex case study problems. From the results, it is evident that the proposed technique is superior in all aspects exceeding the reported optimum values. Also, this new technique consistently outperformed well with higher levels of precision and this stored data will aid the computer-aided process planning mechanism to perform well through machine learning.


i-com ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 19-32
Author(s):  
Daniel Buschek ◽  
Charlotte Anlauff ◽  
Florian Lachner

Abstract This paper reflects on a case study of a user-centred concept development process for a Machine Learning (ML) based design tool, conducted at an industry partner. The resulting concept uses ML to match graphical user interface elements in sketches on paper to their digital counterparts to create consistent wireframes. A user study (N=20) with a working prototype shows that this concept is preferred by designers, compared to the previous manual procedure. Reflecting on our process and findings we discuss lessons learned for developing ML tools that respect practitioners’ needs and practices.


2021 ◽  
Vol 11 (13) ◽  
pp. 5826
Author(s):  
Evangelos Axiotis ◽  
Andreas Kontogiannis ◽  
Eleftherios Kalpoutzakis ◽  
George Giannakopoulos

Ethnopharmacology experts face several challenges when identifying and retrieving documents and resources related to their scientific focus. The volume of sources that need to be monitored, the variety of formats utilized, and the different quality of language use across sources present some of what we call “big data” challenges in the analysis of this data. This study aims to understand if and how experts can be supported effectively through intelligent tools in the task of ethnopharmacological literature research. To this end, we utilize a real case study of ethnopharmacology research aimed at the southern Balkans and the coastal zone of Asia Minor. Thus, we propose a methodology for more efficient research in ethnopharmacology. Our work follows an “expert–apprentice” paradigm in an automatic URL extraction process, through crawling, where the apprentice is a machine learning (ML) algorithm, utilizing a combination of active learning (AL) and reinforcement learning (RL), and the expert is the human researcher. ML-powered research improved the effectiveness and efficiency of the domain expert by 3.1 and 5.14 times, respectively, fetching a total number of 420 relevant ethnopharmacological documents in only 7 h versus an estimated 36 h of human-expert effort. Therefore, utilizing artificial intelligence (AI) tools to support the researcher can boost the efficiency and effectiveness of the identification and retrieval of appropriate documents.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


Sign in / Sign up

Export Citation Format

Share Document