scholarly journals The Origins of Sulfate in Cenozoic Non-Marine Evaporites in the Basin and-Range Province, Southwestern North America

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 455
Author(s):  
Ailiang Gu ◽  
Christopher John Eastoe

Cenozoic evaporites (gypsum and anhydrite) in southwestern North America have wide ranges of δ34S (−30 to +22‰; most +4 to +10‰) and δ18OSO4 (+3 to +19‰). New data are presented for five basins in southern Arizona. The evaporites were deposited in playas or perennial saline lakes in closed basins of Oligocene or younger age. Very large accumulations in Picacho, Safford and Tucson Basins have isotope compositions plotting close to a linear δ34S-δ18OSO4 relationship corresponding to mixing of two sources of sulfur: (1) sulfate recycled from Permian marine gypsum and (2) sulfate from weathering of Laramide-age igneous rocks that include porphyry copper deposits. In the large evaporites, sulfate with δ34S > +10‰ is dominantly of Permian or Early Cretaceous marine origin, but has locally evolved to higher values as a result of bacterial sulfate reduction (BSR). Sulfate with δ34S < −10‰ formed following exposure of sulfides, possibly formed during supergene enrichment of a porphyry copper deposit by BSR, and have values of δ18OSO4 higher than those of local acid rock drainage because of participation of evaporated water in BSR. Accumulations of 30 to 100 km3 of gypsum in Picacho and Safford Basins are too large to explain as products of contemporaneous erosion of Permian and Laramide source materials, but may represent recycling of Late Cretaceous to Miocene lacustrine sulfate.

2020 ◽  
Vol 115 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Jeffrey W. Hedenquist ◽  
Yasushi Watanabe ◽  
Antonio Arribas

Abstract Surface samples of hypogene alunite that cement late breccia bodies from the El Salvador porphyry copper district of Chile were recently dated. One alunite sample over the principal Turquoise Gulch porphyry deposit has a 40Ar/39Ar total gas age of 40.64 ± 1.04 Ma, overlapping the age of a late latite intrusion. Two other samples associated with quartz-alunite replacement of rhyolite, ~750 m southwest of the collapse zone over the block cave of the porphyry copper deposit, are distinctly younger, at 38.12 ± 0.66 and 38.04 ± 0.22 Ma (averages of duplicate analyses, with ±2σ errors). Previously reported U/Pb ages of zircons from 15 Eocene-age diorite, granodiorite, and granite porphyry intrusions have weighted mean ages that range from about 44 to 41 Ma, with peak magmatic flux interpreted at 44 to 43 Ma. Porphyry copper ores in the El Salvador district formed at about the same time as porphyry intrusions, with intrusive centers that migrated in a south-southwest direction, from the small deposits at Cerro Pelado (~44.2 Ma), to Old Camp (~43.6 Ma) and M Gulch-Copper Hill (~43.5–43.1 Ma), to the main ore deposit at Turquoise Gulch (~42 Ma). The granodiorite porphyry intrusions at Turquoise Gulch are associated with ~80% of the known copper ore of the district; they record waning stages of magmatism at 42.5 to 42.0 Ma, followed by weakly altered latite dikes at 41.6 Ma. Molybdenite in quartz veins returned Re-Os ages of 41.8 to 41.2 Ma. The two alunite samples from our study with coincident dates of ~38 Ma provide evidence for magmatic-hydrothermal activity younger than any recognized to date, consistent with the alteration overprint of quartz-alunite on older muscovite after erosion. This younger activity must have been associated with a blind intrusion, likely located south of the Turquoise Gulch deposit, based on the distribution of alteration minerals, and offset from the zoning associated with the Turquoise Gulch center. Stable isotope values (δ34S, δ18O, δD) of the ~38 Ma alunite indicate a high-temperature hypogene origin, consistent with formation in a lithocap environment that typically is located at shallow levels over and on the shoulders of porphyry copper deposits. Both observations—alteration overprint and markedly younger age of alunite—indicate the potential for porphyry copper mineralization south of Granite Gulch, as much as 1,000 m below the level of the coeval outcropping quartz-alunite replacement, perhaps near ~2,000-m elevation; this is hundreds of meters deeper than the known copper ore of Turquoise Gulch.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 431 ◽  
Author(s):  
Connor Gray ◽  
Adrian Van Rythoven

Porphyry-type deposits are crucial reserves of Cu and Mo. They are associated with large haloes of hydrothermal alteration that host particular mineral assemblages. Portable X-ray fluorescence analysis (pXRF) is an increasingly common tool used by mineral prospectors to make judgments in the field during mapping or core logging. A total of 31 samples from 13 porphyry copper deposits of the Western Cordillera were examined. Whole-rock composition was estimated over three points of analysis by pXRF. This approach attempts to capture the rapid and sometimes haphazard application of pXRF in mineral exploration. Modes determined by optical petrography were converted into bulk rock compositions and compared with those determined by pXRF. The elements S, Si, Ca, and K all were underestimated by optical mineralogy, and the elements Cu, Mo, Al, Fe, Mg, and Ti were overestimated by optical mineralogy when compared with pXRF results. Most of these porphyry samples occur in veined porphyritic quartz monzonite that is characteristic of these deposits. Sulfide and silicate vein stockworks are pervasive in most of the samples as well as dissemination of sulfides outwards from veinlets. Ore minerals present include chalcopyrite and molybdenite with lesser bornite. Chalcocite, digenite, and covellite are secondary. Potential sources of analytical bias are discussed.


2019 ◽  
Vol 114 (6) ◽  
pp. 1095-1121
Author(s):  
John C. Mars ◽  
Gilpin R. Robinson ◽  
Jane M. Hammarstrom ◽  
Lukas Zürcher ◽  
Helen Whitney ◽  
...  

Abstract ArcGIS was used to spatially assess and rank potential porphyry copper deposits using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data together with geochemical and geologic datasets in order to estimate undiscovered deposits in the southern Basin and Range Province in the southwestern United States. The assessment was done using a traditional expert opinion three-part method and a prospectivity model developed using weights of evidence and logistic regression techniques to determine if ASTER data integrated with other geologic datasets can be used to find additional areas of prospectivity in well-explored permissive tracts. ASTER hydrothermal alteration data were expressed as 457 alteration polygons defined from a low-pass filtered alteration density map of combined argillic, phyllic, and propylitic rock units. Sediment stream samples were plotted as map grid data and used as spatial information in ASTER polygons. Gravity and magnetic data were also used to define basins greater than 1 km in depth. Each ASTER alteration polygon was ranked for porphyry copper potential using alteration types, spatial amounts of alteration, stream sediment geochemistry, lithology, polygon shape, proximity to other alteration polygons, and deposit and prospects data. Permissive tracts defined for the assessment in the southern Basin and Range Province include the Laramide Northwest, Laramide Southeast, Jurassic, and Tertiary tracts. Expert opinion estimates using the three-part assessment method resulted in a mean estimate of 17 undiscovered porphyry copper deposits, whereas the prospectivity modeling predicted a mean estimate of nine undiscovered deposits. In the well-explored Laramide Southeast tract, which contains the most deposits and has been explored for over 100 years, an average of 4.3 undiscovered deposits was estimated using ASTER alteration polygon data versus 2.8 undiscovered deposits without ASTER data. The Tertiary tract, which contains the largest number of ASTER alteration polygons not associated with known Tertiary deposits, was predicted to contain the most undiscovered resources in the southern Basin and Range Province.


2017 ◽  
Vol 112 (7) ◽  
pp. 1653-1672 ◽  
Author(s):  
Anne Schöpa ◽  
Catherine Annen ◽  
John H. Dilles ◽  
R. Stephen J. Sparks ◽  
Jon D. Blundy

Abstract Many porphyry copper deposits are associated with granitoid plutons. Porphyry copper deposit genesis is commonly attributed to degassing of pluton-forming intermediate to silicic magma chambers during slow cooling and crystallization. We use numerical simulations of thermal evolution during pluton growth to investigate the links between pluton construction, magma accumulation and solidification, volatile release, and porphyry copper deposit formation. The Jurassic Yerington batholith, Nevada, serves as a case study because of its exceptional exposure, revealing the geometry of three main intrusions. The last intrusion, the Luhr Hill granite, is associated with economic porphyry copper deposits localized over cupolas where dikes and fluid flow were focused. Our simulations for the conceptual model linking porphyry copper deposits with the presence of large, highly molten magma chambers show that the Luhr Hill granite must have been emplaced at a vertical thickening rate of several cm/yr or more. This magma emplacement rate is much higher than the time-averaged formation rates of other batholiths reported in the literature. Such low rates, although common, do not lead to magma accumulation and might be one of the reasons why many granitoid plutons are barren. Based on our results, we formulate the new testable hypothesis of a link between porphyry copper deposit formation and the emplacement time scale of the associated magma intrusion.


Sign in / Sign up

Export Citation Format

Share Document