scholarly journals Effect of Paprika Xanthophyll Supplementation on Cognitive Improvement in a Multitasking Exercise: A Pilot Study for Middle-Aged and Older Adults

Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Asako Shirai ◽  
Tsuyoshi Wadazumi

Ingestion of paprika xanthophyll supplement (PX), which has antioxidant effects, has been recently reported to maintain red blood cell deformability and improve oxygen delivery efficiency. Therefore, we hypothesized that the brain activation induced by multitasking exercise in middle-aged and older participants along with the improved erythrocyte oxygen-carrying efficiency induced by PX supplementation would show a synergistic effect, increasing oxygen supply to the brain and improving cognitive function more effectively. In study 1, cerebral blood flow measurements were conducted during the multitasking exercise and cognitive function tests to verify their effect on cognitive function. The results confirmed that cerebral blood flow increased during the exercise and cognitive function improved after the exercise. In study 2, we compared the effects of the multitasking exercise on cognitive function before and after PX supplementation in middle-aged and older participants to evaluate the effects of PX supplementation. The results suggested that PX supplementation enhanced the effects of active multitasking exercise on cognitive function. We speculate that the improvement of oxygen transport efficiency by PX resulted in more effective oxygen supply, allowing the multitasking exercise to occur more effectively, which was reflected as an improvement in the cognitive function.

2012 ◽  
Vol 53 (9) ◽  
pp. 1066-1072 ◽  
Author(s):  
Lars Stegger ◽  
Petros Martirosian ◽  
Nina Schwenzer ◽  
Sotirios Bisdas ◽  
Armin Kolb ◽  
...  

Neurosurgery ◽  
2002 ◽  
Vol 50 (5) ◽  
pp. 996-1005 ◽  
Author(s):  
Randolph S. Marshall ◽  
Ronald M. Lazar ◽  
William L. Young ◽  
Robert A. Solomon ◽  
Shailendra Joshi ◽  
...  

2021 ◽  
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

While Roux-en-Y Gastric Bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes hypoglycemia. Previous work showed attenuated counter-regulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. <p>In this study, 11 non-diabetic subjects with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by FDG PET and activation of brain networks by functional MRI. Post- vs pre-surgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake and this was similar for post- and pre-surgery, whereas hypothalamic FDG uptake was reduced. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen post-surgery. In early hypoglycemia, there was increased activation post- vs pre-surgery of neural networks in CNS regions implicated in glucose regulation such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.</p>


Stroke ◽  
1995 ◽  
Vol 26 (12) ◽  
pp. 2302-2306 ◽  
Author(s):  
Arve Dahl ◽  
David Russell ◽  
Kjell Rootwelt ◽  
Rolf Nyberg-Hansen ◽  
Emilia Kerty

EP Europace ◽  
2019 ◽  
Vol 22 (4) ◽  
pp. 530-537 ◽  
Author(s):  
Marianna Gardarsdottir ◽  
Sigurdur Sigurdsson ◽  
Thor Aspelund ◽  
Valdis Anna Gardarsdottir ◽  
Lars Forsberg ◽  
...  

Abstract Aims Atrial fibrillation (AF) has been associated with reduced brain volume, cognitive impairment, and reduced cerebral blood flow. The causes of reduced cerebral blood flow in AF are unknown, but no reduction was seen in individuals without the arrhythmia in a previous study. The aim of this study was to test the hypothesis that brain perfusion, measured with magnetic resonance imaging (MRI), improves after cardioversion of AF to sinus rhythm (SR). Methods and results All patients undergoing elective cardioversion at our institution were invited to participate. A total of 44 individuals were included. Magnetic resonance imaging studies were done before and after cardioversion with both brain perfusion and cerebral blood flow measurements. However, 17 did not complete the second MRI as they had a recurrence of AF during the observation period (recurrent AF group), leaving 17 in the SR group and 10 in the AF group to complete both measurements. Brain perfusion increased after cardioversion to SR by 4.9 mL/100 g/min in the whole brain (P &lt; 0.001) and by 5.6 mL/100 g/min in grey matter (P &lt; 0.001). Cerebral blood flow increased by 58.6 mL/min (P &lt; 0.05). Both brain perfusion and cerebral blood flow remained unchanged when cardioversion was unsuccessful. Conclusion In this study of individuals undergoing elective cardioversion for AF, restoration, and maintenance of SR for at least 10 weeks after was associated with an improvement of brain perfusion and cerebral blood flow measured by both arterial spin labelling and phase contrast MRI. In those individuals where cardioversion was unsuccessful, there was no change in perfusion or blood flow.


Sign in / Sign up

Export Citation Format

Share Document