scholarly journals Effects of Gastric Bypass Surgery on the Brain; Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity and Cognitive Function during Normo- and Hypoglycemia

2021 ◽  
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

While Roux-en-Y Gastric Bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes hypoglycemia. Previous work showed attenuated counter-regulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. <p>In this study, 11 non-diabetic subjects with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by FDG PET and activation of brain networks by functional MRI. Post- vs pre-surgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake and this was similar for post- and pre-surgery, whereas hypothalamic FDG uptake was reduced. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen post-surgery. In early hypoglycemia, there was increased activation post- vs pre-surgery of neural networks in CNS regions implicated in glucose regulation such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.</p>

2021 ◽  
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

While Roux-en-Y Gastric Bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes hypoglycemia. Previous work showed attenuated counter-regulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. <p>In this study, 11 non-diabetic subjects with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by FDG PET and activation of brain networks by functional MRI. Post- vs pre-surgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake and this was similar for post- and pre-surgery, whereas hypothalamic FDG uptake was reduced. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen post-surgery. In early hypoglycemia, there was increased activation post- vs pre-surgery of neural networks in CNS regions implicated in glucose regulation such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.</p>


2021 ◽  
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

While Roux-en-Y Gastric Bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes hypoglycemia. Previous work showed attenuated counter-regulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. <p>In this study, 11 non-diabetic subjects with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by FDG PET and activation of brain networks by functional MRI. Post- vs pre-surgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake and this was similar for post- and pre-surgery, whereas hypothalamic FDG uptake was reduced. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen post-surgery. In early hypoglycemia, there was increased activation post- vs pre-surgery of neural networks in CNS regions implicated in glucose regulation such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.</p>


2021 ◽  
pp. 1-7
Author(s):  
Ji Soo Baik ◽  
Tae Young Lee ◽  
Nam Gyun Kim ◽  
Kyoungjune Pak ◽  
Sung-Hwa Ko ◽  
...  

Background: Photobiomodulation (PBM) affects local blood flow regulation through nitric oxide generation, and various studies have reported on its effect on improving cognitive function in neurodegenerative diseases. However, the effect of PBM in the areas of the vertebral arteries (VA) and internal carotid arteries (ICA), which are the major blood-supplying arteries to the brain, has not been previously investigated. Objective: We aimed to determine whether irradiating PBM in the areas of the VA and ICA, which are the major blood-supplying arteries to the brain, improved regional cerebral blood flow (rCBF) and cognitive function. Methods: Fourteen patients with mild cognitive impairments were treated with PBM. Cognitive assessment and single-photon emission computed tomography were implemented at the baseline and at the end of PBM. Results: Regarding rCBF, statistically significant trends were found in the medial prefrontal cortex, lateral prefrontal cortex, anterior cingulate cortex, and occipital lateral cortex. Based on the cognitive assessments, statistically significant trends were found in overall cognitive function, memory, and frontal/executive function. Conclusion: We confirmed the possibility that PBM treatment in the VA and ICA areas could positively affect cognitive function by increasing rCBF. A study with a larger sample size is needed to validate the potential of PBM.


Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Asako Shirai ◽  
Tsuyoshi Wadazumi

Ingestion of paprika xanthophyll supplement (PX), which has antioxidant effects, has been recently reported to maintain red blood cell deformability and improve oxygen delivery efficiency. Therefore, we hypothesized that the brain activation induced by multitasking exercise in middle-aged and older participants along with the improved erythrocyte oxygen-carrying efficiency induced by PX supplementation would show a synergistic effect, increasing oxygen supply to the brain and improving cognitive function more effectively. In study 1, cerebral blood flow measurements were conducted during the multitasking exercise and cognitive function tests to verify their effect on cognitive function. The results confirmed that cerebral blood flow increased during the exercise and cognitive function improved after the exercise. In study 2, we compared the effects of the multitasking exercise on cognitive function before and after PX supplementation in middle-aged and older participants to evaluate the effects of PX supplementation. The results suggested that PX supplementation enhanced the effects of active multitasking exercise on cognitive function. We speculate that the improvement of oxygen transport efficiency by PX resulted in more effective oxygen supply, allowing the multitasking exercise to occur more effectively, which was reflected as an improvement in the cognitive function.


Diabetes ◽  
2021 ◽  
pp. db201172
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

1989 ◽  
Vol 28 (03) ◽  
pp. 88-91
Author(s):  
J. Schröder ◽  
H. Henningsen ◽  
H. Sauer ◽  
P. Georgi ◽  
K.-R. Wilhelm

18 psychopharmacologically treated patients (7 schizophrenics, 5 schizoaffectives, 6 depressives) were studied using 99mTc-HMPAO-SPECT of the brain. The regional cerebral blood flow was measured in three transversal sections (infra-/supraventricular, ventricular) within 6 regions of interest (ROI) respectively (one frontal, one parietal and one occipital in each hemisphere). Corresponding ROIs of the same section in each hemisphere were compared. In the schizophrenics there was a significantly reduced perfusion in the left frontal region of the infraventricular and ventricular section (p < 0.02) compared with the data of the depressives. The schizoaffectives took an intermediate place. Since the patients were treated with psychopharmaca, the result must be interpreted cautiously. However, our findings seem to be in accordance with post-mortem-, CT- and PET-studies presented in the literature. Our results suggest that 99mTc-HMPAO-SPECT may be helpful in finding cerebral abnormalities in endogenous psychoses.


2001 ◽  
Vol 14 (5) ◽  
pp. 407-415
Author(s):  
John T. Metz ◽  
Malcolm D. Cooper ◽  
Terry F. Brown ◽  
Leann H. Kinnunen ◽  
Declan J. Cooper

The process of discovering and developing new drugs is complicated. Neuroimaging methods can facilitate this process. An analysis of the conceptual bases and practical limitations of different neuroimaging modalities reveals that each technique can best address different kinds of questions. Radioligand studies are well suited to preclinical and Phase II questions when a compound is known or suspected to affect well-understood mechanisms; they are also useful in Phase IV to characterize effective agents. Cerebral blood flow studies can be extremely useful in evaluating the effects of a drug on psychological tasks (mostly in Phase IV). Glucose metabolism studies can answer the simplest questions about whether a compound affects the brain, where, and how much. Such studies are most useful in confirming central effects (preclinical and early clinical phases), in determining effective dose ranges (Phase II), and in comparing different drugs (Phase IV).


2012 ◽  
Vol 34 (10) ◽  
pp. 2484-2493 ◽  
Author(s):  
Karen J. Towgood ◽  
Mervi Pitkanen ◽  
Ranjababu Kulasegaram ◽  
Alex Fradera ◽  
Suneeta Soni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document